Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Electronic Resource  (22)
  • Online Resource
  • 2005-2009  (2)
  • 2000-2004  (20)
  • 1890-1899
  • bioremediation
Material
  • Electronic Resource  (22)
  • Online Resource
Years
Year
  • 1
    ISSN: 1572-9729
    Keywords: bioremediation ; Dehalococcoides ; dechlorination ; microcosm ; tetrachloroethane ; trichloroethene
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract This study investigated the biotransformation pathways of 1,1,2,2-tetrachloroethane (1,1,2,2-TeCA) in the presence of chloroethenes (i.e. tetrachloroethene, PCE; trichloroethene, TCE) in anaerobic microcosms constructed with subsurface soil and groundwater from a contaminated site. When amended with yeast extract, lactate, butyrate, or H2 and acetate, 1,1,2,2-TeCA was initially dechlorinated via both hydrogenolysis to 1,1,2-trichloroethane (1,1,2-TCA) (major pathway) and dichloroelimination to dichloroethenes (DCEs) (minor pathway), with both reactions occurring under sulfidogenic conditions. In the presence of only H2, the hydrogenolysis of 1,1,2,2-TeCA to 1,1,2-TCA apparently required the presence of acetate to occur. Once formed, 1,1,2-TCA was degraded predominantly via dichloroelimination to vinyl chloride (VC). Ultimately, chloroethanes were converted to chloroethenes (mainly VC and DCEs) which persisted in the microcosms for very long periods along with PCE and TCE originally present in the groundwater. Hydrogenolysis of chloroethenes occurred only after highly reducing methanogenic conditions were established. However, substantial conversion to ethene (ETH) was observed only in microcosms amended with yeast extract (200 mg/l), suggesting that groundwater lacked some nutritional factors which were likely provided to dechlorinating microorganisms by this complex organic substrate. Bioaugmentation with an H2-utilizing PCE-dechlorinating Dehalococcoides spp. -containing culture resulted in the conversion of 1,1,2,2-TeCA, PCE and TCE to ETH and VC. No chloroethanes accumulated during degradation suggesting that 1,1,2,2-TeCA was degraded through initial dichloroelimination into DCEs and then typical hydrogenolysis into ETH and VC.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1572-9729
    Keywords: bioremediation ; composting ; ecotoxicity ; oil sludge
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The present work attempts to ascertain the efficacy of low cost technology (in our case, composting) as a bioremediation technique for reducing the hydrocarbon content of oil refinery sludge with a large total hydrocarbon content (250–300 g kg−1), in semiarid conditions. The oil sludge was produced in a refinery sited in SE Spain The composting system designed, which involved open air piles turned periodically over a period of 3 months, proved to be inexpensive and reliable. The influence on hydrocarbon biodegradation of adding a bulking agent (wood shavings) and inoculation of the composting piles with pig slurry (a liquid organic fertiliser which adds nutrients and microbial biomass to the pile) was also studied. The most difficult part during the composting process was maintaining a suitable level of humidity in the piles. The most effective treatment was the one in which the bulking agent was added, where the initial hydrocarbon content was reduced by 60% in 3 months, compared with the 32% reduction achieved without the bulking agent. The introduction of the organic fertiliser did not significantly improve the degree of hydrocarbon degradation (56% hydrocarbon degraded). The composting process undoubtedly led to the biodegradation of toxic compounds, as was demonstrated by ecotoxicity tests using luminescent bacteria and tests on plants in Petri dishes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1572-9729
    Keywords: bioremediation ; heavy metals ; metal availability ; organic matter ; pyrite ; sulphide oxidation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A field experiment, lasting 14 months, was carried out in order to assess the effect of organic amendment and lime addition on the bioavailability of heavy metals in contaminated soils. The experiment took place in a soil affected by acid, highly toxic pyritic waste from the Aznalcóllar mine (Seville, Spain) in April 1998. The following treatments were applied (3 plots per treatment): cow manure, a mature compost, lime (to plots having pH 〈 4), and control without amendment. During the study two crops of Brassica juncea were grown, with two additions of each organic amendment. Throughout the study, the evolution of soil pH, total and available (DTPA-extractable) heavy metals content (Zn, Cu, Mn, Fe, Pb and Cd), electrical conductivity (EC), soluble sulphates and plant growth and heavy metal uptake were followed. The study indicates that: (1) soil acidification, due to the oxidation of metallic sulphides in the soil, increased heavy metal bioavailability; (2) liming succeeded in controlling the soil acidification; and (3) the organic materials generally promoted fixation of heavy metals in non-available soil fractions, with Cu bioavailability being particularly affected by the organic treatments.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Geotechnical and geological engineering 18 (2000), S. 313-334 
    ISSN: 1573-1529
    Keywords: bioremediation ; carbon substrate ; 1,2-dichloroethane ; methanol ; molasses ; soil columns
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Historic spillages of chlorinated hydrocarbons at a vinyl chloride plant in the Rotterdam–Botlek area in The Netherlands has lead to deep-seated pollution of the underlying aquifer. The principal pollutant is 1,2-dichloroethane (1,2-DCA). As a temporary measure, the contamination is being contained using a pump and treat system. In the long term, in-situ bioremediation has been proposed using a biologically active zone where pollutants would be dechlorinated by microorganisms that simultaneously degrade other carbon sources. In order to investigate the suitability of this new technology, a programme of laboratory tests was carried out. The laboratory programme involved a series of anaerobic soil column tests, where the selection and delivery of different carbon substrates that stimulated 1,2-DCA dechlorination were investigated. The soil columns were prepared using soil and groundwater samples from boreholes. Groundwater was flushed through the columns under anaerobic conditions. A comparison was made between the transformation of 1,2-DCA without a carbon substrate and in the presence of sugars (molasses) and alcohol (methanol) respectively. In addition, different modes of delivery were investigated. In the case of molasses, the material was injected into the column as a plug to simulate grout injection in the field, whereas methanol was delivered as a constant flow dissolved in the influent. Both carbon substrates resulted in the biotransformation of 1,2-DCA. However, fermentation of molasses produced secondary effects that led to a drop in pH and an excessive production of carbon dioxide, which temporarily blocked the flow of groundwater.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Bioscience reports 20 (2000), S. 239-258 
    ISSN: 1573-4935
    Keywords: heavy metals ; phytoremediation ; bioremediation ; bioavailability ; chemical availability ; soil microorganisms ; plant-microbe interactions
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract In this review, chemical and biological parameters are discussed thatstrongly influence the speciation of heavy metals, their availability tobiological systems and, consequently, the possibilities to usebioremediation as a cleanup tool for heavy metal polluted sites. In orderto assess heavy metal availability, a need exists for rapid, cost-effectivesystems that reliably predict this parameter and, based on this, thefeasibility of using biological remediation techniques for site managementand restoration. Special attention is paid to phytoremediation as anemerging technology for stabilization and remediation of heavy metalpollution. In order to improve phytoremediation of heavy metal pollutedsites, several important points relevant to the process have to beelucidated. These include the speciation and bioavailability of the heavymetals in the soil determined by many chemical and biological parameters,the role of plant-associated soil microorganisms and fungi inphytoremediation, and the plants. Several options are described how plant-associated soil microorganisms canbe used to improve heavy metal phytoremediation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Hydrogeology journal 8 (2000), S. 126-141 
    ISSN: 1435-0157
    Keywords: Key words microbial processes ; contamination ; bioremediation ; lipid analysis ; phospholipid fatty acids (PLFA)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Description / Table of Contents: Résumé Ce papier passe en revue les applications des techniques biochimiques basées sur les lipides pour caractériser les communautés microbiennes présentes dans les aquifères et dans les autres habitats souterrains profonds. Ces techniques, telles que l'analyse des acides gras phospholipidiques (PLFA), peuvent fournir des informations sur un ensemble de caractères microbiens, tels que la biomasse, la physiologie, l'identité taxonomique et fonctionnelle, et surtout la composition de la communauté. En outre, l'analyse statistique multivariée des données sur les lipides peut établir les liens entre des changements spatiaux ou temporels dans la communauté microbienne et des facteurs environnementaux. L'utilisation des techniques basées sur les lipides dans l'étude de la microbiologie des eaux souterraines est intéressante parce qu'elle ne nécessite pas de mise en culture et qu'elle peut fournir des données quantitatives sur les communautés dans leur ensemble. Toutefois, les effets combinés de changements physiologiques et phylogénétiques sur la composition d'une communauté peuvent brouiller l'interprétation des données; de nombreuses questions se posent sur la validité des différentes techniques lipidiques. Malgré ces oppositions, la recherche basée sur les lipides a commencéà montrer des tendances dans la composition des communautés dans les aquifères pollués et dans ceux non perturbés; ces résultats contribuent ainsi à notre compréhension de l'écologie microbienne des eaux souterraines et montrent qu'il existe un potentiel pour leur utilisation en vue d'une optimisation de la dépollution biologique des eaux souterraines.
    Abstract: Resumen Se revisan distintas técnicas bioquímicas que se basan en el análisis de lípidos para caracterizar las comunidades microbianas en hábitats subsuperficiales, incluyendo acuíferos. Estas técnicas, entre las que se incluye el análisis de ácidos grasos fosfolípidos (PLFA), pueden proporcionar información sobre toda una serie de características de las comunidades microbianas, como su biomasa, fisiología, identidad taxonómica y funcional y composición. Además, el análisis estadístico multivariado de los datos de lípidos permite relacionar los cambios espaciales o temporales en las comunidades microbianas con factores ambientales. Las técnicas basadas en lípidos son muy útiles para el estudio microbiológico de las aguas subterráneas, puesto que no requieren cultivos y además proporcionan datos cuantitativos de comunidades completas. Sin embargo, la acción combinada de los cambios fisiológicos y filogenéticos en la composición de lípidos en una comunidad pueden confundir la interpretación de los datos, por lo existen muchas cuestiones abiertas respecto a la validez de algunas de estas técnicas. A pesar de estas dificultades, estas técnicas han permitido detectar diferentes tendencias en la composición de las comunidades en acuíferos con y sin contaminación, lo que contribuye a nuestro entendimiento de la ecología microbiana de los acuíferos. Este último aspecto tiene un uso potencial en la optimización de los métodos de biorremediación de acuíferos.
    Notes: Abstract  This paper reviews published applications of lipid-based biochemical techniques for characterizing microbial communities in aquifers and other deep subsurface habitats. These techniques, such as phospholipid fatty acid (PLFA) analysis, can provide information on a variety of microbial characteristics, such as biomass, physiology, taxonomic and functional identity, and overall community composition. In addition, multivariate statistical analysis of lipid data can relate spatial or temporal changes in microbial communities to environmental factors. The use of lipid-based techniques in the study of groundwater microbiology is advantageous because they do not require culturing and can provide quantitative data on entire communities. However, combined effects of physiological and phylogenetic changes on the lipid composition of a community can confound interpretation of the data, and many questions remain about the validity of various lipid techniques. Despite these caveats, lipid-based research has begun to show trends in community composition in contaminated and pristine aquifers that contribute to our understanding of groundwater microbial ecology and have potential for use in optimization of bioremediation of groundwater pollutants.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Hydrogeology journal 8 (2000), S. 77-88 
    ISSN: 1435-0157
    Keywords: microbial processes ; contamination ; metals ; hydrocarbons ; bioremediation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Description / Table of Contents: Geobacter se convierten en los miembros dominantes de la comunidad microbiana cuando se desarrollan condiciones Fe(III)-reductoras, bien como resultado de la contaminación orgánica, bien por estimulación artificial. En consecuencia, se hace necesario un mayor entendimiento de la ecofisiologéa de los microorganismos del género Geobacter para mejorar las predicciones sobre atenuación natural de los contaminantes orgánicos bajo condiciones anaerobias y para el diseño de estrategias de biorremediación del subsuelo en los casos de contaminación por metales.
    Notes: Geobacter become dominant members of the microbial community when Fe(III)-reducing conditions develop as the result of organic contamination, or when Fe(III) reduction is artificially stimulated. These results suggest that further understanding of the ecophysiology of Geobacter species would aid in better prediction of the natural attenuation of organic contaminants under anaerobic conditions and in the design of strategies for the bioremediation of subsurface metal contamination.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Hydrogeology journal 8 (2000), S. 63-76 
    ISSN: 1435-0157
    Keywords: microbial processes ; contamination ; bioremediation ; natural attenuation ; heterogeneity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1572-9729
    Keywords: bioremediation ; hydrocarbon-degrading bacteria ; indigenous microflora ; oil ; Rhodococcus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract This paper summarises the experience accumulated duringthe field application of biopreparation `Rhoder' (solely or in a combinationwith preliminary mechanical collection of free oil) for remediation of oil polluted aquatic systems and soils in the Moscow region and Western Siberia during 1994–1999.It was demonstrated that `Rhoder' had a very high efficiency (〉99%) for bioremediation of the open aquatic surfaces (100 m2 bay of the River Chernaya, two 5,000 m2 lakes in Vyngayakha) at initial level of oil pollution of 0.4–19.1 g/l. During remediation of the wetland (2,000 m2) in Urai (initial level of oil pollution of 10.5 g/l), a preliminary mechanical collection of oil was applied (75% removal) followed by a triple treatment with `Rhoder'. It resulted in an overall treatment efficiency of 94%. Relatively inferior results of bioremediation of the 10,000 m2 wetland in Vyngayakha (65% removal) and the 1,000 m2 marshy peat soil in Nizhnevartovsk (19% removal) can be attributed to the very high initial level of oil pollution (24.3 g/l and 〉750 g/g dry matter, respectively) aggravated by the fact that it was impossible to apply a preliminary mechanical collection of oil on these sites. A possible strategy for remediation of such heavily polluted sitesis discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1572-9729
    Keywords: aerobic degradation ; bioaugmentation ; bioreactors ; bioremediation ; MTBE ; natural attenuation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The addition of methyl tert-butyl ether (MTBE) to gasoline has resulted in public uncertainty regarding the continued reliance on biological processes for gasoline remediation. Despite this concern, researchers have shown that MTBE can be effectively degraded in the laboratory under aerobic conditions using pure and mixed cultures with half-lives ranging from 0.04 to 29 days. Ex-situ aerobic fixed-film and aerobic suspended growth bioreactor studies have demonstrated decreases in MTBE concentrations of 83% and 96% with hydraulic residence times of 0.3 hrs and 3 days, respectively. In microcosm and field studies, aerobic biodegradation half-lives range from 2 to 693 days. These half-lives have been shown to decrease with increasing dissolved oxygen concentrations and, in some cases, with the addition of exogenous MTBE-degraders. MTBE concentrations have also been observed to decrease under anaerobic conditions; however, these rates are not as well defined. Several detailed field case studies describing the use of ex-situ reactors, natural attenuation, and bioaugmentation are presented in this paper and demonstrate the potential for successful remediation of MTBE-contaminated aquifers. In conclusion, a substantial amount of literature is available which demonstratesthat the in-situ biodegradation of MTBE is contingent on achieving aerobic conditions in the contaminated aquifer.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 11
    Electronic Resource
    Electronic Resource
    Springer
    Biodegradation 11 (2000), S. 107-116 
    ISSN: 1572-9729
    Keywords: bioremediation ; Fe(III) reduction ; methanogenesis ; subsurfce microbiology ; sulfate reduciton
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Although many studies have indicated that benzene persists under anaerobic conditions in petroleum-contaminated environments, it has recently been documented that benzene can be anaerobically oxidized with most commonlyconsidered electron acceptors for anaerobic respiration. These include: Fe(III),sulfate, nitrate, and possibly humic substances. Benzene can also be convertedto methane and carbon dioxide under methanogenic conditions. There is evidencethat benzene can be degraded under in situ conditions in petroleum-contaminatedaquifers in which either Fe(III) reduction or methane production is the predominant terminal electron-accepting process. Furthermore, evidence from laboratory studies suggests that benzene may be anaerobically degraded in petroleum-contaminated marine sediments under sulfate-reducing conditions. Laboratory studies have suggested that within the Fe(III) reduction zone of petroleum-contaminated aquifers, benzene degradation can be stimulated with the addition of synthetic chelators which make Fe(III) more available for microbial reduction. The addition of humic substances and other compounds that contain quinone moieties can also stimulate anaerobic benzene degradation in laboratory incubations of Fe(III)-reducing aquifer sediments by providing an electron shuttle between Fe(III)-reducing microorganisms and insoluble Fe(III) oxides. Anaerobic benzene degradation in aquifer sediments can be stimulated with the addition of sulfate, but in some instances an inoculum of benzene-oxidizing,sulfate-reducing microorganisms must also be added. In a field trial, sulfate addition to the methanogenic zone of a petroleum-contaminated aquifer stimulated the growth and activity of sulfate-reducing microorganisms and enhanced benzene removal. Molecular phylogenetic studies have provided indications of what microorganisms might be involved in anaerobic benzene degradation in aquifers. The major factor limiting further understanding of anaerobic benzene degradation is the lack of a pure culture of an organism capable of anaerobic benzene degradation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 12
    ISSN: 1572-9729
    Keywords: aerobic ; bioremediation ; biodegradation ; gasoline ; MTBE ; TBA
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract With the current practice of amending gasoline with up to 15% by volume MTBE, the contamination of groundwater by MTBE has become widespread. As a result, the bioremediation of MTBE-impacted aquifers has become an active area of research. A review of the current literature on the aerobic biodegradation of MTBE reveals that a number of cultures from diverse environments can either partially degrade or completely mineralize MTBE. MTBE is either utilized as a sole carbon and energy source or is degraded cometabolically by cultures grown on alkanes. Reported degradation rates range from 0.3 to 50 mg MTBE/g cells/h while growth rates (0.01–0.05 g MTBE/g cells/d) and cellular yields (0.1–0.2 g cells/g MTBE) are generally low. Studies on the mechanisms of MTBE degradation indicate that a monooxygenase enzyme cleaves the ether bond yielding tert-butyl alcohol (TBA) and formaldehyde as the dominant detectable intermediates. TBA is further degraded to 2-methyl-2-hydroxy-1-propanol, 2-hydroxyisobutyric acid, 2-propanol, acetone, hydroxyacteone and eventually, carbon dioxide. The majority of these intermediates are also common to mammalian MTBE metabolism. Laboratory studies on the degradation of MTBE in the presence of gasoline aromatics reveal that while degradation rates of other gasoline components are generally not inhibited by MTBE, MTBE degradation could be inhibited in the presence of more easily biodegradable compounds. Controlled field studies are clearly needed to elucidate MTBE degradation potential in co-contaminant plumes. Based on the reviewed studies, it is likely that a bioremediation strategy involving direct metabolism, cometabolism, bioaugmentation, or some combination thereof, could be applied as a feasible and cost-effective treatment method for MTBE contamination.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 13
    ISSN: 1573-6776
    Keywords: bioremediation ; degradation ; hydrocarbon ; oil ; respirometry
    Source: Springer Online Journal Archives 1860-2000
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Oil biodegradation in oil-contaminated sand was simultaneously measured by respirometric and thin-layer chromatography/flame ionization detector (TLC/FID) methods. Degradation rate of 10–32 mg-C kg sand−1 day was achieved by amending the sand with inorganic nutrients and an oil-degrading yeast. The amendment also increased the initial CO2 production rate by 5–15 folds, which was not detected by the TLC/FID analysis. However, it was possible to monitor the accumulation of resin/asphaltene fraction up to 130% by the TLC/FID analysis during the oil degradation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 14
    ISSN: 1573-6776
    Keywords: bioremediation ; Kuwaiti soil ; polycyclic aromatic hydrocarbon (PAH)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract In the uncontaminated farm soil, more than 80% of the supplemented acenaphthene, fluoranthene, and pyrene (100 mg/100 g soil) decreased in 90 days, while ratio of removal was about 20%, 30%, and 0%, respectively, in the Kuwaiti oil-contaminated soil. Simultaneous addition of naphthalene, phenanthrene, and anthrathene (100 mg of each compound/100 g soil) led the acenaphthene to a decrease of about 20% to 45% but not of fluoranthene and pyrene. Addition of the farm soil to the Kuwaiti soil did not enhance the decrease of these three PAHs.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 15
    Electronic Resource
    Electronic Resource
    Springer
    Biotechnology letters 22 (2000), S. 783-788 
    ISSN: 1573-6776
    Keywords: bioremediation ; mercuric chloride ; Pseudomonas putida
    Source: Springer Online Journal Archives 1860-2000
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract A mercury removal-recovery system was developed for collection of elemental mercury volatilized by biological mercuric ion reduction. Using the mercury removal-recovery system, removal of mercuric chloride from mercury-containing buffer without nutrients by resting cells of mercury-resistant bacterium, Pseudomonas putida PpY101/pSR134 was tested. Optimum temperature, pH, thiol compounds and cell concentration on removal of mercuric chloride were determined, and 92 to 98% of 40 mg Hg l−1 was recovered in 24 h. The efficiency of mercuric chloride removal from river water and seawater was as high as that observed when using a buffered solution.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 16
    Electronic Resource
    Electronic Resource
    Springer
    Biotechnology letters 22 (2000), S. 1757-1760 
    ISSN: 1573-6776
    Keywords: bioremediation ; extracellular polymeric substances ; lead ; manganese
    Source: Springer Online Journal Archives 1860-2000
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Extracellular polymeric substances (EPS) produced from a strain of Rhizobium etli demonstrated an ability to bind a variety of metals. Cells and capsular EPS rapidly bound Mn2+ ions preferentially to Pb2+ and Cu2+, but also showed an affinity for Pb2+. The binding capabilities of soluble EPS were affected by its extraction and processing. The results suggest potential applications in the field of bioremediation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 17
    Electronic Resource
    Electronic Resource
    Springer
    Biotechnology letters 22 (2000), S. 915-919 
    ISSN: 1573-6776
    Keywords: bioremediation ; chlorophenols ; microcosm ; oxygen ; soil
    Source: Springer Online Journal Archives 1860-2000
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract A chlorophenol-contaminated soil was tested for the biodegradability in a semi-pilot scale microcosm using indigenous microorganisms. More than 90% of 4-chlorophenol and 2,4,6-trichlorophenol, initially at 30 mg kg−1, were removed within 60 days and 30 mg pentachlorophenol kg−1 was completely degraded within 140 days. The chlorophenols were degraded more effectively under aerobic condition than under anaerobic condition. Soil moisture had a significant effect with the slowest degradation rate of chlorophenols at 25% in the range of 10–40% moisture content. At 25–40%, the rate of chlorophenol degradation was directly related to the soil moisture content, whereas at 10–25%, it was inversely related. Limited oxygen availability through soil agglomeration at 25% moisture content might decrease the degradation rate of chlorophenols.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 18
    ISSN: 1573-6776
    Keywords: bioremediation ; genetic engineering ; heavy metal ; hydrogen sulfide ; thiosulfate reductase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract The thiosulfate reductase gene (phsABC) from Salmonella typhimuriumwas expressed in Escherichia coliin order to produce sulfide from inorganic thiosulfate and precipitate metals as metal sulfide complexes. The sulfide-engineered strain removed significant amounts of heavy metals from the medium within 24 h: 99% of zinc up to 500 μM, 99% of lead up to 200 μM, 99% of 100 μM and 91% of 200 μM cadmium. In a mixture of 100 μM each of cadmium, lead, and zinc, the strain removed 99% of the total metals from solution within 10 h. Cadmium was removed first, lead second, and zinc last. These results have important implications for removal of metals from wastewater contaminated with several metals.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 19
    ISSN: 1573-2932
    Keywords: bioremediation ; microbial degradation ; microorganisms ; pesticide contamination ; phytoremediation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract The fate of atrazine and metolachlor,applied as a mixture, in soil taken from twopesticide-contaminated sites in Iowa (denoted as Alphaor Bravo) were determined in laboratory studies. Atrazine and metolachlor degradation, as well asatrazine mineralization, were greater in soilcollected from Kochia scoparia L. (Schrader)rhizosphere than in soils from unvegetated areas. Theradiolabeled 14C-carbinol and14C-morpholinone metabolites were identified in14C-metolachlor-applied soil 60 d aftertreatment. The half-life for atrazine in Alpha soilwas significantly less in the rhizosphere soil (50 d)than in unvegetated soil (193 d). Quantities ofspecific atrazine degraders were one to two orders ofmagnitude greater in Bravo soils than in Alpha soils. In an experiment with plants present, significantlymore 14C-atrazine was taken up by K.scoparia (9.9% of the applied 14C) than by Brassica napus L. Significantly less atrazine wasextractable from soils vegetated with K.scoparia than from soils vegetated with B.napus or unvegetated soils.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 20
    ISSN: 1573-2932
    Keywords: bioassays ; bioremediation ; microbiology ; soil contamination ; soil toxicity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract A soil contaminated with polycyclic aromatic hydrocarbons, petroleum hydrocarbons and chlorophenols was bioremediated in field box plots. Three different bioremediation treatments (tillage and irrigation alone (box plot 2) or in addition to amendment with nitrogen and phosphorus (box plots 3 and 4) and additional organic amendment composed ofagricultural crop residues (box plot 4)) were comparedusing chemical analysis for target contaminants andsix toxicity tests (seed germination, earthwormsurvival, SOS Chromotest, Toxi-Chromotest, solid-phaseMicrotox® andred blood cell (RBC) haemolysisassay). Degradation was enhanced, and toxicity wasgenerally the most reduced, in box plots 3 and 4. Although chemical analysis indicated that the twoamendment protocols were equally effective, soiltoxicity was generally the most reduced in box plot 4. The earthworm survival and seed germination assayswere the most reliable and relevant toxicity tests. Difficulties arising with the other tests includedinsensitivity to changes in soil contaminant levels,inconsistency and interference by soil particles andother soil constituents. Because of the lack ofagreement between toxicity tests, these resultssupport the use of a battery of toxicity tests inconjunction with chemical analysis, when assessing theefficacy of bioremediation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 21
    Electronic Resource
    Electronic Resource
    Springer
    Water, air & soil pollution 120 (2000), S. 315-329 
    ISSN: 1573-2932
    Keywords: biodegradation kinetics ; bioremediation ; BTX ; factorsaffecting bioremediation ; groundwater velocity ; Monod kinetics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract The effect of groundwater velocity onbioremediation of gasoline contaminated sandy soil hasbeen investigated using a pilot scale sand tank model.The effect of hydrogen peroxide and contaminantconcentration are also included. A factorialexperiment has been conducted to study three factors,groundwater velocity, inlet BTX concentration andhydrogen peroxide dose. Observed concentration datacollected from the sand tank model have been used forestimating the transport parameters. Three differentbiodegrdation kinetics, namely first-order/zero-order,Monod and Michaelis Menten (a modification of Monodkinetics considering no microbial growth) kineticshave been used to model the biodegration. The datahave been found to fit all three models withacceptable coefficient of regression. Groundwatervelocity has been found to be the most significantfactor governing the biodegradation rate constants(determined from the first-order rate constant) of BTXcompounds. Hydrogen peroxide dose and BTX concentration have also been found to be significant factors.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 22
    ISSN: 1573-0972
    Keywords: Bacterial community ; bioremediation ; PCR-SSCP
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract The extent of shift in soil bacterial community structure during bioremediational treatments was investigated by PCR-single-strand-conformation polymorphism (SSCP) analysis, which was followed by computer-assisted cluster analysis of the community fingerprints. While biostimulation as well as bioaugmentation enhanced the degradation of phenanthrene in soil, both bioremediational treatments caused shifts in the bacterial community structure. Drastic changes were observed in the initial phase of bioaugmentation. Our results demonstrate that computer-assisted fingerprint analysis is readily applicable to the study for the comparative analysis of microbial community structure using molecular profiling techniques.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...