Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Electronic Resource  (2)
  • 2005-2009  (2)
  • 1860-1869
  • 2006  (2)
  • DGGE  (1)
  • dichlorophenol  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Biodegradation 17 (2006), S. 207-217 
    ISSN: 1572-9729
    Keywords: biodegradation ; DGGE ; K2Ni(CN)4 soil bacterial populations
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Metal cyanides are significant contaminants of many soils found at the site of former industrial activity. In this study we isolated bacteria capable of degrading ferric ferrocyanide and K2Ni(CN)4. One of these bacteria a Rhodococcus spp. was subsequently used to bioaugment a minimal medium broth, spiked with K2Ni(CN)4, containing 1 g of either an uncontaminated topsoil or a former coke works site soil. Degradation of the K2Ni(CN)4 was observed in both soils, however, bioaugmentation did not significantly impact the rate or degree of K2Ni(CN)4 removal. Statistical analysis of denaturing gradient gel electrophoresis profiles showed that the topsoil bacterial community had a higher biodiversity, and its structure was not significantly affected by either K2Ni(CN)4 or bioaugmentation. In contrast, profiles from the coke works site indicated significant changes in the bacterial community in response to these additions. Moreover, in both soils although bioaugmentation did not affect rates of biodegradation the Rhodococcus spp. did become established in the communities in broths containing both top and coke works soil. We conclude that bacterial communities from contaminated soils with low biodiversity are much more readily perturbed through interventions such as contamination events or bioaugmentation treatments and discuss the implications of these findings for bioremediation studies.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1572-9729
    Keywords: activated sludge ; dichlorophenol ; monooxygenation ; nicotinamide adenine dinucleotide ; phenolics ; specific growth rate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The two-tank accelerator/aerator modification of activated sludge significantly increases the biodegradation of hydrocarbons requiring initial monooxygenation reactions, such as phenol and 2,4-dichlorophenol (DCP). The small accelerator tank has a controlled low dissolved oxygen (DO) concentration that can enrich the biomass in NADH + H+. It also has a very high specific growth rate (μacc) that up-regulates the biomass’s content of the monooxygenase enzyme. Here, we develop and test the ACCEL model, which quantifies all key phenomena taking place when the accelerator/aerator system is used to enhance biodegradation of hydrocarbons requiring initial monooxygenations. Monooxygenation kinetics follow a multiplicative relationship in which the organic substrates (phenol or DCP) and DO have separate Monod terms, while the biomass’s content of NADH + H+ has a first-order term. The monooxygenase enzyme has different affinities (K values) for phenol and DCP. The biomass’s NADH + H+ content is based on a proportioning of NAD(H) according to the relative rates of NADH + H+ sources and sinks. Biomass synthesis occurs simultaneously through utilization of acetate, phenol, and DCP, but each has its own true yield. The ACCEL model accurately simulates all trends for one-tank and two-tank experiments in which acetate, phenol, and DCP are biodegraded together. In particular, DCP removal is affected most by DOacc and the retention-time ratio, Θacc/Θtotal. Adding an accelerator tank dramatically increases DCP removal, and the best DCP removal occurs for 0.2 〈 DOacc  〈 0.5 mg/l and 0.08 〈 Θacc/Θtotal 〈 0.2. The rates of phenol and DCP utilization follow the multiplicative relationship with a maximum specific rate coefficient proportional to μacc. Finally, μacc increases rapidly for Θacc/Θtotal 〈 0.25, acetate removal in the accelerator fuels the high μacc, and the biomass’s NADH + H+ content increases very dramatically for DOacc 〈 0.25 mg/l.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...