Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Electronic Resource  (11)
  • 1985-1989  (7)
  • 1955-1959  (4)
  • 1920-1924
  • 1890-1899
  • gene transfer
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Fish physiology and biochemistry 7 (1989), S. 409-413 
    ISSN: 1573-5168
    Keywords: gene transfer ; transgenic fish ; growth hormone ; antifreeze polypeptides
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Successful production of transgenic fish by gene transfer technology is a very important breakthrough in the techniques of genetic manipulation in animals. This will have an impact of an unprecedented scale in fish biology, aquaculture and mariculture. This is a summary of the workshop on the Transgenic Fish presented at this Symposium. The Workshop discussed the current knowledge, experimental difficulties and related topics of the transgenic fish. It recommended further research on better gene constructs, methods development, safety containment and the closer collaboration of researchers of different disciplines.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-0603
    Keywords: Agrobacterium ; gene transfer ; somatic embryos ; walnut ; β-glucuronidase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Somatic embryos have been successfully used as a target tissue for transformation and regeneration of transgenic walnut plants. Walnut somatic embryos, initiated originally from developing zygotic embryos, proliferate numerous secondary embryos from single cells in the epidermal layer. These single cells in intact somatic embryos are susceptible to transformation by genetically engineeredAgrobacterium tumefaciens and provide a means to regenerate nonchimeric transgenic plants. This gene transfer system has been made more efficient using, a) vector plasmids containing two marker genes encoding β-glucuronidase (GUS) and aminoglycoside phosphotransferase (APH(3′)II) and B) a more virulent strain ofAgrobacterium. This system should be applicable to any crop that undergoes repetitive embryogenesis from singleAgrobacterium-susceptible cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0730-2312
    Keywords: tumorigenicity ; metastasis ; ha-ras ; oncogene ; gene transfer ; skin cancer ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: High-molecular-weight genomic DNA isolated from a human cutaneous squamous cell carcinoma (AS) was assayed for its ability to induce tumorigenic transformation of NIH 3T3 cells. Subcutaneous injection of NIH 3T3 cells cotransfected with DNAs from AS tumor and pSV2-neo plasmid not only induced tumors at the site of injection, but also metastasized spontaneously to the lungs in 100% of nude mice injected. DNA isolated from a representative primary tumor and a metastasis was again used in a second round of transfection. Injection of secondary transfectants into nude mice again resulted in induction of both subcutaneous tumors and spontaneous long metastases. Southern blot hybridization with ras-specific probes revealed that DNA from both primary tumors and metastases induced by AS tumor DNA contained highly amplified Ha-ras oncogene. Furthermore, DNAs from secondary tumors and metastases induced by DNA from a primary tumor and a metastasis also contained similar highly amplified Ha-ras oncogene. These results suggest that the amplified Ha-ras oncogene may be responsible for induction of both tumorigenic and metastatic phenotypes in NIH 3T3 cells transfected with DNA from AS tumor.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Plant molecular biology 8 (1987), S. 461-469 
    ISSN: 1573-5028
    Keywords: Agrobacterium tumefaciens ; binary vectors ; gene transfer ; kanamycin resistance ; legume transformation ; Trifolium repens
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A system was established for introducing cloned genes into white clover (Trifolium repens L.). A high regeneration white clover genotype was transformed with binary Agrobacterium vectors containing a chimaeric gene which confers kanamycin resistance. Transformed kanamycin resistant callus was obtained by culturing Agrobacterium inoculated stolon internode segments on selective medium. The kanamycin resistance phenotype was stable in cells and in regenerated shoots. Transformation was confirmed by the expression of an unselected gene, nopaline synthase in selected cells and transgenic shoots and by the detection of neomycin phosphotransferase II enzymatic activity in kanamycin resistant cells. Integration of vector DNA sequences into plant DNA was demonstrated by Southern blot hybridisation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Plant molecular biology 8 (1987), S. 209-216 
    ISSN: 1573-5028
    Keywords: hairy root ; gene transfer
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Genetic engineering of legumes and other important dicotyledonous plants is limited because of the difficulty of regenerating plants via cell culture. Since a considerable number of crop plants can be regenerated only from root culture, the introduction of foreign genes into Agrobacterium rhizogenes-induced hairy roots may expand the list of crop plants that could be genetically engineered. Here we report genetic transformation of alfalfa (Medicago sativa L.), a valuable forage legume, using a virulent strain of Agrobacterium rhizogenes containing, in addition to its Ri-plasmid, a binary vector containing a nopaline synthase gene. Plant cells transformed by this vector can be easily identified by their ability to produce nopaline. Transformed alfalfa plants were recovered from A. rhizogenes-induced hairy roots. These transgenic plants were characterized by normal leaf morphology and stem growth but a root system that was shallow and more extensive than normal. These plants were also fertile, set seeds upon self-pollination and outcrossing. Nopaline was detected in R1 progeny. Southern blot analysis confirmed the presence of multiple copies of T-DNAs from the Riplasmid in the plant genome in addition to the vector T-DNA.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-5028
    Keywords: Bradyrhizobium ; gene transfer ; nitrogen fixation ; plasmid ; root-nodule symbiosis ; vector construction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A non-essential DNA region carrying two different repeated sequences (RSβ3 and RSα9) adjacent to a nitrogen fixation (nif) gene cluster has been identified previously in Bradyrhizobium japonicum strain 110. In closely related B. japonicum strains a similar genomic arrangement was found. We constructed a mobilizable plasmid vector carrying RSβ3 and RSα9, and a kanamycin resistance cassette (nptII gene) plus suitable cloning sites inserted between the two repeated sequences. Using this vector (pRJ1035), stable integration of a lacZ gene fusion into the B. japonicum genomic RS region was achieved. The resulting strain yielded more than 10-fold higher β-galactosidase activity in soybean root nodules as compared to a B. japonicum strain carrying the same lacZ fusion on a pRK290-based plasmid.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Cellular and molecular life sciences 42 (1986), S. 1128-1137 
    ISSN: 1420-9071
    Keywords: Cell fusion ; cell hybrids ; gene transfer ; human genome ; mapping
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-5060
    Keywords: gene transfer ; Hordeum vulgare ; neomycin phosphotransferase II ; particle bombardment ; transgenic barley
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Transgenic barley plants (Hordeum vulgare L. cv. Kymppi) were obtained by particle bombardment of various tissues. Immature embryos and microspore-derived cultures were bombarded with gold particles coated with plasmid DNA carrying the gene coding for neomycin phosphotransferase II (NPTII), together with plasmid DNA containing the gene for β-glucuronidase (GUS). Bombarded immature embryos were grown to plants without selection and NPTII activity was screened in small plantlets. One plant proved to be transgenic (T0). This chimeric plant passed the transferred nptII gene to its T1 progeny. The presence of the nptII gene was demonstrated by the PCR technique and enzyme activity was analyzed by an NPTII gel assay. Four T0 spikes and 15 T1 offspring were transgenic. The integration and inheritance was confirmed by Southern blot hybridization. Transgenic T2 and T3 plants were produced by isolating embryos from green grains of transgenic T1 and T2 plants, respectively and growing them to plants. After selfing, the ratio of transgenic to non-transgenic T2 offspring was shown to follow the rule of Mendelian inheritance. The general performance of transgenic plants was normal and no reduction in fertility was observed. Microspore-derived cultures were bombarded one and four weeks after microspore isolation. After bombardment, cultures were grown either with or without antibiotic selection (geneticin R or kanamycin). When cultures were grown without selection and regenerated plants were transferred to kanamycin selection in rooting phase, one out of a total of about 1500 plants survived. This plant both carried and expressed the transferred nptII gene. The integration was confirmed by Southern blot hybridization. This plant was not fertile.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1573-5060
    Keywords: meristem ; shoot apex ; ballistic microtargeting ; gene transfer ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The classical approach of gene transfer to a given plant species delivers the foreign gene to transformable cells and then puts the effort into generating plants. This approach is very difficult in many important crop plants, including cereals, and the results of regeneration are very genotype-dependent. In contrast, we use regenerable cells and try to transform them. Shoot apical meristems provide a tissue which regenerates in situ a fertile plant for most given genotypes or species. Transformation of meristem cells may lead to transgenic sectors in chimeras. These sectors may contribute to the gametes and, thus, to transgenic offspring, which then should be homohistonts and not sectorial chimeras like their parents. Our model plant for these studies is wheat. Microtargeting is a ballistic approach which is particularly suitable for the controlled delivery of microprojectiles to meristem cells in situ (Sautter et al., 1991). We summarize in this paper our experience with ballistic microtargeting of transgenes to wheat shoot apical meristem cells in situ.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1573-5060
    Keywords: Vicia narbonensis ; gene transfer ; gene expression ; seeds ; 2S albumin ; methionine
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Epicotyl explants were co-cultivated with Agrobacterium tumefaciens EHA101 to transfer a chimeric 2S albumin gene construct carried in the binary Ti plasmid vectors pGSGLUC1 or pGA472 into the grain legume Vicia narbonensis. This gene encoding the sulphur-rich Brazil nut albumin was under the control of either the CaMV 35S promoter which permits gene expression in all organs, or the Vicia faba legumin B4 promoter which elicits seed-specific gene expression. After callus formation and selection for kanamycin resistance, somatic embryos were induced which, in the case of transformation with the vector pGSGLUC1, were screened for GUS activity. Embryos that produced GUS were in addition analysed for 2S albumin formation. Selected transgenic embryos were cloned by multiple shoot regeneration. Rooted and fertile plants were obtained by grafting transgenic shoots on the appropriate seedlings. R1 and R2 generations were raised and analysed for GUS as well as 2S albumin gene expression. Expression of the 35S promoter/2S albumin gene fusion took place in all organs of the transgenic plants including the cotyledons of seeds, whereas seed-specific gene expression was found in transformants with the legumin promoter/2S albumin gene fusion. The 2S albumin accumulated in the 2S protein fraction of transgenic seeds and its primary translation product was processed into the 9 and 3 kDa polypeptide chains. The foreign protein was localised in the protein bodies of the grain legume. Analysis of the R2 plants indicated Mendelian inheritance of the 2S albumin gene. In homozygous V. narbonensis plants the amounts of 2S albumin were twice that present in the corresponding heterozygous plants. Whereas only low level formation of the foreign protein was achieved if the gene was under the control of the 35S promoter, approximately 3.0% of the soluble seed protein was 2S albumin if seed-specific gene expression was directed by the legumin B4 promoter. Some of these transformants exhibited a three-fold increase in the methionine content of the salt-soluble protein fraction extracted from seeds.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 11
    ISSN: 1573-5060
    Keywords: gene transfer ; crop species ; particle bombardment ; transgenic plants ; cereals ; legumes ; woody plants
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The limiting component in the creation of transgenic crops has been the lack of effective means to introduce foreign genes into elite germplasm. However, the development of novel direct DNA transfer methodology, by-passing limitations imposed by Agrobacterium-host specificity and cell culture constraints, has allowed the engineering of almost all major crops, including formerly recalcitrant cereals, legumes and woody species. The creation of transgenic rice, wheat, maize, barley, oat, soybean, phaseolus, peanut, poplar, spruce, cotton and others, in an efficient and in some cases, variety-independent fashion, is a significant step towards the routine application of recombinant DNA methodology to the improvement of most important agronomic crops. In this review we will focus on key elements and advantages of particle bombardment technology in order to evaluate its impact on the accelerated commercialization of products based on agricultural biotechnology and its utility in studying basic plant developmental processes and function through transgenesis. Fundamental differences between conventional gene transfer methods, utilizing Agrobacterium vectors or protoplast/suspension cultures, and particle bombardment will be discussed in depth.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...