Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2025-2025
  • 2015-2019
  • 2005-2009  (5)
  • 1970-1974
  • 1890-1899
  • 1850-1859
  • 1840-1849
  • 1810-1819
  • 2019
  • 2017
  • 2009  (3)
  • 2006  (2)
  • 1857
  • 1854
  • 1853
  • 1852
  • 1841
  • 1830
  • ddc:620  (3)
  • bioremediation  (2)
Material
Years
  • 2025-2025
  • 2015-2019
  • 2005-2009  (5)
  • 1970-1974
  • 1890-1899
  • +
Year
  • 2019
  • 2017
  • 2009  (3)
  • 2006  (2)
  • 1857
  • +
Language
  • 1
    Publication Date: 2016-06-09
    Description: In this paper we revisit the a priori turbulent flame speed tabulation (TFST) technique for a given parameter space within the region of flamelet combustion-regimes. It can be used as a subgrid-scale (SGS) model in Large Eddy Simulation (LES). In a first step, stationary laminar flamelets are computed and stored over the progress variable following the ideas of flamelet generated manifolds (FGM). In a second step, the incompressible one-dimensional Navier-Stokes equations supplemented by the equation for the progress variable are solved on a grid that resolves all turbulent scales. Additionally, turbulent transport is implemented via the linear eddy model (LEM). The turbulent flame structures are solved until a statistically stationary mean value of the turbulent flame speed has been reached. The results are stored in a table that could be used by large scale premixed combustion models, e.g. front tracking schemes. First results are compared quantitatively with direct numerical simulations (DNS) taken from literature. Then it is illustrated in one example how the new method could help to fix constants in algebraic models for turbulent flame speeds. Further it is shown how the technique can be extended to incorporate turbulent strain effects. Finally we investigate the effect of the use of detailed and tabulated chemistry under unsteady conditions.
    Keywords: ddc:620
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-06-09
    Description: A world-wide used program for the simulation of fire-induced flows is the Fire Dynamics Simulator (FDS) which originally was developed for a purely serial execution on single-processor computing systems. Due to steadily increasing problem sizes and accuracy requirements as well as restrictions in storage capacity and computing power on single-processor systems, the efficient simulation of the considered fire scenarios can only be achieved on modern high-performance systems based on multi-processor architectures. The transition to those systems requires the elaborate parallelization of the underlying numerical methods which must guarantee the same result for a given problem as the corresponding serial execution. Unfortunately, one fundamental serial serial solver of FDS, the pressure solver, only possesses a low degree of inherent parallelizm. Its current parallelization may cause additional numerical errors, casually leading to significant losses of accuracy or even numerical instabilities. In order to ensure that the parallelization errors are limited by the leading error of the numerical scheme such that second order convergence for the whole method can be acchieved, optimized parallelization concepts must be designed. With respect to these considerations this articles gives an overview of the current parallel pressure solver as well as the problems related to it and presents an alternative method, SCARC, to overcome the existing complicacies. Part I explains the theory, concept and implementation of this new strategy, whereas Part II describes a series of validation and verification tests to proof its correctness.
    Keywords: ddc:620
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-06-09
    Description: Because CFD programs, like FDS, generally consist of a large number of different components representing the variety of participating numerical algorithms and chemical / physical processes, it is nearly impossible to verify such codes in their entirety, for example with comparisons of fire tests. Instead, a careful verification and validation with respect to the underlying mathematical conditions and applied numerical schemes is indispensable. In particular, error cancelations between single program components can only be detected by such detailed component-level tests. In part I of this article series a conceptual deficiency of the FDS program package with regard to multi-mesh computations was illustrated and an alternative domain decomposition strategy FDS-ScaRC was introduced. In this second part we will present the structure of a comprehensive test concept and the needs for a more mathematically and numerically orientated test procedure that is much more suited for a reliable evaluation than only a simple visual comparison of the numerical results with experimental fire tests. After a general introduction of our test concept we will demonstrate the high potential of the new FDS-\scarc{} technique compared to the FDS-FFT technique which is used in the FDS program package as yet. Based on this concept, we will present a comprehensive set of analytical and numerical test results.
    Keywords: ddc:620
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1572-9729
    Keywords: bioremediation ; Dehalococcoides ; dechlorination ; microcosm ; tetrachloroethane ; trichloroethene
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract This study investigated the biotransformation pathways of 1,1,2,2-tetrachloroethane (1,1,2,2-TeCA) in the presence of chloroethenes (i.e. tetrachloroethene, PCE; trichloroethene, TCE) in anaerobic microcosms constructed with subsurface soil and groundwater from a contaminated site. When amended with yeast extract, lactate, butyrate, or H2 and acetate, 1,1,2,2-TeCA was initially dechlorinated via both hydrogenolysis to 1,1,2-trichloroethane (1,1,2-TCA) (major pathway) and dichloroelimination to dichloroethenes (DCEs) (minor pathway), with both reactions occurring under sulfidogenic conditions. In the presence of only H2, the hydrogenolysis of 1,1,2,2-TeCA to 1,1,2-TCA apparently required the presence of acetate to occur. Once formed, 1,1,2-TCA was degraded predominantly via dichloroelimination to vinyl chloride (VC). Ultimately, chloroethanes were converted to chloroethenes (mainly VC and DCEs) which persisted in the microcosms for very long periods along with PCE and TCE originally present in the groundwater. Hydrogenolysis of chloroethenes occurred only after highly reducing methanogenic conditions were established. However, substantial conversion to ethene (ETH) was observed only in microcosms amended with yeast extract (200 mg/l), suggesting that groundwater lacked some nutritional factors which were likely provided to dechlorinating microorganisms by this complex organic substrate. Bioaugmentation with an H2-utilizing PCE-dechlorinating Dehalococcoides spp. -containing culture resulted in the conversion of 1,1,2,2-TeCA, PCE and TCE to ETH and VC. No chloroethanes accumulated during degradation suggesting that 1,1,2,2-TeCA was degraded through initial dichloroelimination into DCEs and then typical hydrogenolysis into ETH and VC.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1572-9729
    Keywords: bioremediation ; composting ; ecotoxicity ; oil sludge
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The present work attempts to ascertain the efficacy of low cost technology (in our case, composting) as a bioremediation technique for reducing the hydrocarbon content of oil refinery sludge with a large total hydrocarbon content (250–300 g kg−1), in semiarid conditions. The oil sludge was produced in a refinery sited in SE Spain The composting system designed, which involved open air piles turned periodically over a period of 3 months, proved to be inexpensive and reliable. The influence on hydrocarbon biodegradation of adding a bulking agent (wood shavings) and inoculation of the composting piles with pig slurry (a liquid organic fertiliser which adds nutrients and microbial biomass to the pile) was also studied. The most difficult part during the composting process was maintaining a suitable level of humidity in the piles. The most effective treatment was the one in which the bulking agent was added, where the initial hydrocarbon content was reduced by 60% in 3 months, compared with the 32% reduction achieved without the bulking agent. The introduction of the organic fertiliser did not significantly improve the degree of hydrocarbon degradation (56% hydrocarbon degraded). The composting process undoubtedly led to the biodegradation of toxic compounds, as was demonstrated by ecotoxicity tests using luminescent bacteria and tests on plants in Petri dishes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...