Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1985-1989  (1)
  • 1970-1974
  • 1965-1969  (3)
  • 1987  (1)
  • 1966  (3)
  • Flexor reflex afferents
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 65 (1987), S. 294-306 
    ISSN: 1432-1106
    Keywords: Secondary spindle afferents ; Subsets of excitatory interneurones ; Length servo ; Lateral inhibition ; Flexor reflex afferents
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary A hypothesis is forwarded regarding the role of secondary spindle afferents and the FRA (flexor reflex afferents) in motor control. The hypothesis is based on evidence (cf. Lundberg et al. 1987a, b) summarized in 9 introductory paragraphs. Group II excitation. It is postulated that subsets of excitatory group II interneurones (transmitting disynaptic group II excitation to motoneurones) may be used by the brain to mediate motor commands. It is assumed that the brain selects subsets of interneurones with convergence of secondary afferents from muscles whose activity is required for the movement. During movements depending on coactivation of static γ-motoneurones impulses in secondary afferents may servo-control transmission to α-motoneurones at an interneuronal level. The large group II unitary EPSPs in interneurones are taken to indicate that, given an adequate interneuronal excitability, impulses in single secondary afferents may fire the interneurone and produce EPSPs in motoneurones; interneuronal transmission would then be equivalent to that in a monosynaptic pathway but with impulses from different muscles combining into one line. It is postulated that impulses in the FRA are evoked by the active movements and that the role of the multisensory convergence from the FRA onto the group II interneurones is to provide the high background excitability which allows the secondary spindle afferents to operate as outlined above. The working hypothesis is put forward that a movement governed by the excitatory group II interneurones is initiated by descending activation of these interneurones, but is maintained in a later phase by the combined effect of FRA activity evoked by the movement and by spindle secondaries activated by descending activation of static γ-motoneurones. As in the original “follow up length servo” hypothesis (Rossi 1927; Merton 1953), we assume that a movement at least in a certain phase can be governed from the brain solely or mainly via static γ-motoneurones. However, our hypothesis implies that the excitatory group II reflex connexions have a strength which does not allow transmission to motoneurones at rest and that the increase in the gain of transmission during an active movement is supplied by the movement itself. Group II inhibition. It is suggested that the inhibitory reflex pathways like the excitatory ones have subsets of interneurones with limited group II convergence. When higher centres utilize a subset of excitatory group II interneurones to evoke a given movement, they may mobilize inhibitory subsets to inhibit muscles not required in the movement. Inhibition may be reciprocal of extensors during flexor activation (the spinal pattern), of flexors during extensor activation or of flexors and extensors in more complex movements involving cocontraction of other flexors and extensors. It is postulated that group II inhibition depends on conjoint activation from spindle afferents and other sources (descending and/or the FRA) so that inhibition may be coupled to group II excitation of other motoneurones. Such a coupling would correspond to the “α-γ-linkage in reciprocal Ia inhibition” (Lundberg 1970) and is denoted “α-γ-linkage in lateral group II inhibition”. FRA and other reflex pathways. Results are summarized showing that the FRA evoke convergent excitation in interneurones not only in group II reflex pathways but also in other reflex pathways like the reciprocal Ia inhibitory, the nonreciprocal group I inhibitory and probably also in specialized reflex pathways from cutaneous afferents. It is inferred that facilitation of reflex transmission by impulses in the FRA evoked by the active movement may be a general principle. In this way reflex transmission to α-motoneurones may be weak at rest and not disturb passive movements but have a high gain when the reflexes are required to regulate active movement.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 1 (1966), S. 306-319 
    ISSN: 1432-1106
    Keywords: Lateral reticular nucleus ; Reticulocerebellar tract ; Spinoreticular tract ; Cerebellum ; Flexor reflex afferents
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Mass discharges were recorded from the dissected left restiform body in unanaesthetized, decerebrate, and decerebellate cats. The spinal cord was severed in the thoracic or cervical region sparing only the left ventral quadrant. In this preparation the discharges were shown to relate largely or exclusively to activity in the reticulocerebellar tract originating from the lateral reticular nucleus. The ascending spinal tract was identified with the bilateral ventral flexor reflex tract (bVFRT) of Lundberg and Oscarsson (1962). The reticulocerebellar tract was activated from the flexor reflex afferents and nerve volleys from each of the four limbs were equally effective. It is concluded that the lateral reticular nucleus is not responsible for the somatotopically organized projection of cutaneous afferents, as assumed before. The bVFRT is strongly influenced from the cerebellar cortex and the organization of the closed loop formed between the cortex and the spinal cord is discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 1 (1966), S. 320-328 
    ISSN: 1432-1106
    Keywords: Lateral reticular nucleus ; Reticulocerebellar tract ; Spinoreticular tract ; Cerebellum ; Flexor reflex afferents
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The experiments were done on unanaesthetized, decerebrate, and decerebellate cats. Recording was made from axons originating in the lateral reticular nucleus on stimulation of various nerves, cutaneous receptors, and certain descending tracts. Excitatory and inhibitory effects were evoked from the flexor reflex afferents of receptive fields which included most of the body surface. It is concluded that the lateral reticular nucleus with respect to its afferent inflow is similar to the non-cerebellar nuclei of the reticular formation. The possibility that the reticulocerebellar tract is important in determining the background excitation of cortical neurones is discussed. The effects evoked by stimulation of descending tracts were consistent with the disclosure that the bilateral ventral flexor reflex tract is the afferent path to the lateral reticular nucleus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 1 (1966), S. 329-337 
    ISSN: 1432-1106
    Keywords: Inferior olive ; Olivocerebellar tract ; Spinoolivary tract ; Cerebellum ; Flexor reflex afferents
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The discharges were recorded from the dissected right restiform body in unanaesthetized, decerebrate, and decerebellate cats. The spinal cord was severed in the thoracic and/or cervical region sparing only the left ventral quadrant. The discharges were shown to relate largely or exclusively to activity in the olivocerebellar tract. The olivocerebellar discharges were elicited by stimulation of the flexor reflex afferents. Large responses were evoked from the right hindlimb nerves and small responses from the left hindlimb nerves. The responses had a latency of about 20 msec. The spinoolivary tract is tentatively identified with the contralateral ventral flexor reflex tract of Lundberg and Oscarsson (1962).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...