Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (1,661)
  • 2010-2014  (1,856)
  • 1990-1994  (760,303)
  • 1925-1929  (103,566)
  • 1920-1924  (79,165)
  • 1820-1829  (1,232)
Years
Year
Language
  • 101
    Publication Date: 2020-08-05
    Language: German
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 102
    Publication Date: 2020-01-17
    Description: The non-selective activation of central and peripheral opioid receptors is a major shortcoming of currently available opioids. Targeting peripheral opioid receptors is a promising strategy to preclude side effects. Recently, we showed that fentanyl-derived μ-opioid receptor (MOR) agonists with reduced acid dissociation constants (pKa) due to introducing single fluorine atoms produced injury-restricted antinociception in rat models of inflammatory, postoperative and neuropathic pain. Here, we report that a new double-fluorinated compound (FF6) and fentanyl show similar pKa, MOR affinity and [35S]-GTPγS binding at low and physiological pH values. In vivo, FF6 produced antinociception in injured and non-injured tissue, and induced sedation and constipation. The comparison of several fentanyl derivatives revealed a correlation between pKa values and pH-dependent MOR activation, antinociception and side effects. An opioid ligand's pKa value may be used as discriminating factor to design safer analgesics.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 103
    Publication Date: 2020-01-31
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 104
    Publication Date: 2020-11-24
    Description: Osteoarthritis (OA) is the most common cause of disability in ageing societies, with no effective therapies available to date. Two preclinical models are widely used to validate novel OA interventions (MCL-MM and DMM). Our aim is to discern disease dynamics in these models to provide a clear timeline in which various pathological changes occur. OA was surgically induced in mice by destabilisation of the medial meniscus. Analysis of OA progression revealed that the intensity and duration of chondrocyte loss and cartilage lesion formation were significantly different in MCL-MM vs DMM. Firstly, apoptosis was seen prior to week two and was narrowly restricted to the weight bearing area. Four weeks post injury the magnitude of apoptosis led to a 40–60% reduction of chondrocytes in the non-calcified zone. Secondly, the progression of cell loss preceded the structural changes of the cartilage spatio-temporally. Lastly, while proteoglycan loss was similar in both models, collagen type II degradation only occurred more prominently in MCL-MM. Dynamics of chondrocyte loss and lesion formation in preclinical models has important implications for validating new therapeutic strategies. Our work could be helpful in assessing the feasibility and expected response of the DMM- and the MCL-MM models to chondrocyte mediated therapies.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 105
    Publication Date: 2021-02-01
    Description: We present a theoretical framework to understand the collective dynamics of an ensemble of electrophoretically driven colloidal particles that are forced to assemble around a single topological defect in a nematic liquid crystal by an alternating current electric field. Our generic model combines phoretic propulsion with electrostatic interactions and liquid-crystal-mediated hydrodynamics, which are effectively cast into a long-range interparticle repulsion, while nematic elasticity plays a subdominant role. Simulations based on this model fully capture the collective organization process observed in the experiments and other striking effects as the emergence of conformal ordering and a nearly frequency-independent repulsive interaction above 10Hz. Our results demonstrate the importance of hydrodynamic interactions on the assembly of driven microscale matter in anisotropic media.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 106
    Publication Date: 2020-03-09
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 107
    Publication Date: 2020-03-09
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 108
    Publication Date: 2020-02-27
    Language: English
    Type: doctoralthesis , doc-type:doctoralThesis
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 109
    Publication Date: 2020-03-09
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 110
    Publication Date: 2021-10-28
    Language: English
    Type: proceedings , doc-type:Other
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 111
    Publication Date: 2020-03-19
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 112
    Publication Date: 2020-02-27
    Language: English
    Type: bachelorthesis , doc-type:bachelorThesis
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 113
    Publication Date: 2020-12-14
    Description: PIPS-SBB is a distributed-memory parallel solver with a scalable data distribution paradigm. It is designed to solve MIPs with a dual-block angular structure, which is characteristic of deterministic-equivalent Stochastic Mixed-Integer Programs (SMIPs). In this paper, we present two different parallelizations of Branch & Bound (B&B), implementing both as extensions of PIPS-SBB, thus adding an additional layer of parallelism. In the first of the proposed frameworks, PIPS-PSBB, the coordination and load-balancing of the different optimization workers is done in a decentralized fashion. This new framework is designed to ensure all available cores are processing the most promising parts of the B&B tree. The second, ug[PIPS-SBB,MPI], is a parallel implementation using the Ubiquity Generator (UG), a universal framework for parallelizing B&B tree search that has been successfully applied to other MIP solvers. We show the effects of leveraging multiple levels of parallelism in potentially improving scaling performance beyond thousands of cores.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 114
    Publication Date: 2020-08-05
    Description: Consider a flow network, i.e., a directed graph where each arc has a nonnegative capacity and an associated length, together with nonempty supply-intervals for the sources and nonempty demand-intervals for the sinks. The goal of the Maximum Minimum Cost Flow Problem (MMCF) is to find fixed supply and demand values within these intervals, such that the optimal objective value of the induced Minimum Cost Flow Problem (MCF) is maximized. In this paper, we show that MMCF is APX-hard and remains NP-hard in the uncapacitated case.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 115
    Publication Date: 2020-03-19
    Description: The NEC SX-Aurora TSUBASA is a new generation of vector processing architectures that combines a standard Intel Xeon host with the newly developed NEC Vector Engine co-processor cards. One way to use these co-processors is offloading suitable parts of the program from the host to the Vector Engines. Currently, the only vendor-provided offloading solutions are the low-level Vector Engine Offloading (VEO) library, and a builtin reverse-offloading mechanism named VHcall. In this work, we extend the portable Heterogeneous Active Messages (HAM) based HAM-Offload framework with support for the NEC SX-Aurora TSUBASA. Therefore, we design, implement, and evaluate two messaging protocols aimed at minimising offloading cost. This sheds some light on how to achieve fast communication between host CPU and the Vector Engines of the NEC SX-Aurora TSUBASA. Compared with VEO, the DMA-based protocol reduces offloading overhead by a factor of 13×. The resulting framework enables users to write portable offload applications with low overhead, that do neither require a language extension like OpenMP, nor a special language like OpenCL. Existing HAM-Offload applications are now ready to run on the NEC SX-Aurora TSUBASA.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 116
    Publication Date: 2020-03-19
    Description: We present HAM (Heterogeneous Active Messages), a C++-only active messaging solution for heterogeneous distributed systems.Combined with a communication protocol, HAM can be used as a generic Remote Procedure Call (RPC) mechanism. It has been used in HAM-Offload to implement a low-overhead offloading framework for inter- and intra-node offloading between different architectures including accelerators like the Intel Xeon Phi x100 series and the NEC SX-Aurora TSUBASA Vector Engine. HAM uses template meta-programming to implicitly generate active message types and their corresponding handler functions. Heterogeneity is enabled by providing an efficient address translation mechanism between the individual handler code addresses of processes running different binaries on different architectures, as well a hooks to inject serialisation and deserialisation code on a per-type basis. Implementing such a solution in modern C++ sheds some light on the shortcomings and grey areas of the C++ standard when it comes to distributed and heterogeneous environments.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 117
    Publication Date: 2021-11-02
    Description: Many real-world processes can naturally be modeled as systems of interacting agents. However, the long-term simulation of such agent-based models is often intractable when the system becomes too large. In this paper, starting from a stochastic spatio-temporal agent-based model (ABM), we present a reduced model in terms of stochastic PDEs that describes the evolution of agent number densities for large populations. We discuss the algorithmic details of both approaches; regarding the SPDE model, we apply Finite Element discretization in space which not only ensures efficient simulation but also serves as a regularization of the SPDE. Illustrative examples for the spreading of an innovation among agents are given and used for comparing ABM and SPDE models.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 118
    Publication Date: 2020-08-05
    Description: Branch-and-bound (B&B) is an algorithmic framework for solving NP-hard combinatorial optimization problems. Although several well-designed software frameworks for parallel B&B have been developed over the last two decades, there is very few literature about successfully solving previously intractable combinatorial optimization problem instances to optimality by using such frameworks.The main reason for this limited impact of parallel solvers is that the algorithmic improvements for specific problem types are significantly greater than performance gains obtained by parallelization in general. Therefore, in order to solve hard problem instances for the first time, one needs to accelerate state-of-the-art algorithm implementations. In this paper, we present a computational study for solving Steiner tree problems and mixed integer semidefinite programs in parallel. These state-of-the-art algorithm implementations are based on SCIP and were parallelized via the ug[SCIP-*,*]-libraries---by adding less than 200 lines of glue code. Despite the ease of their parallelization, these solvers have the potential to solve previously intractable instances. In this paper, we demonstrate the convenience of such a parallelization and present results for previously unsolvable instances from the well-known PUC benchmark set, widely regarded as the most difficult Steiner tree test set in the literature.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 119
    Publication Date: 2022-07-19
    Description: Functional surgery on the nasal framework requires referential criteria to objectively assess nasal breathing for indication and follow-up. Thismotivated us to generate amean geometry of the nasal cavity based on a statistical shape model. In this study, the authors could demonstrate that the introduced nasal cavity’s mean geometry features characteristics of the inner shape and airflow, which are commonly observed in symptom-free subjects. Therefore, the mean geometry might serve as a reference-like model when one considers qualitative aspects. However, to facilitate quantitative considerations and statistical inference, further research is necessary. Additionally, the authorswere able to obtain details about the importance of the isthmus nasi and the inferior turbinate for the intranasal airstream.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 120
    Publication Date: 2022-07-19
    Description: This work introduces methods for analyzing the three imaging modalities delivered by Talbot-Lau grating interferometry X-ray computed tomography (TLGI-XCT). The first problem we address is providing a quick way to show a fusion of all three modal- ities. For this purpose the tri-modal transfer function widget is introduced. The widget controls a mixing function that uses the output of the transfer functions of all three modalities, allowing the user to create one customized fused image. A second problem prevalent in processing TLGI-XCT data is a lack of tools for analyzing the segmentation process of such multimodal data. We address this by providing methods for computing three types of uncertainty: From probabilistic segmentation algorithms, from the voxel neighborhoods as well as from a collection of results. We furthermore introduce a linked views interface to explore this data. The techniques are evaluated on a TLGI-XCT scan of a carbon-fiber reinforced dataset with impact damage. We show that the transfer function widget accelerates and facilitates the exploration of this dataset, while the uncertainty analysis methods give insights into how to tweak and improve segmentation algorithms for more suitable results.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 121
    Publication Date: 2022-07-19
    Description: Statistical Shape Models (SSMs) allow for a compact representation of shape and shape variation and they are a proven means for model-based 3D anatomy reconstruction from medical image data. In orthopaedics and biomechanics, SSMs are increasingly employed to individualize measurement data or to create individualized anatomical models. The human spine is a versatile and complex articulated structure and thus is an interesting candidate to be modeled using an advanced type of SSMs. For modeling and analysis of articulated structures, so called articulated SSMs (aSSMs) have been developed. However, a missing feature of aSSMs is the consideration of collisions in the course of individual fitting and articulation. The aim of this thesis is to develop an aSSM of two adjacent vertebrae that handles collisions between components correctly. The model will incorporate the two major aspects of variability: Shape of a single vertebra and the relative positioning of neighboring vertebrae. That way it becomes possible to adjust shape and articulation in view of a physically and geometrically plausible individualization. To be able to apply collision-aware aSSMs in simulation and optimisation in future work, the approach is based on a parallelized collision detection method employing Graphics Processing Units (GPUs).
    Language: English
    Type: masterthesis , doc-type:masterThesis
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 122
    Publication Date: 2022-07-19
    Description: Background Geometric parameters have been proposed for prediction of cerebral aneurysm rupture risk. Predicting the rupture risk for incidentally detected unruptured aneurysms could help clinicians in their treatment decision. However, assessment of geometric parameters depends on several factors, including the spatial resolution of the imaging modality used and the chosen reconstruction procedure. The aim of this study was to investigate the uncertainty of a variety of previously proposed geometric parameters for rupture risk assessment, caused by variability of reconstruction procedures. Materials 26 research groups provided segmentations and surface reconstructions of five cerebral aneurysms as part of the Multiple Aneurysms AnaTomy CHallenge (MATCH) 2018. 40 dimensional and non-dimensional geometric parameters, describing aneurysm size, neck size, and irregularity of aneurysm shape, were computed. The medians as well as the absolute and relative uncertainties of the parameters were calculated. Additionally, linear regression analysis was performed on the absolute uncertainties and the median parameter values. Results A large variability of relative uncertainties in the range between 3.9 and 179.8% was found. Linear regression analysis indicates that some parameters capture similar geometric aspects. The lowest uncertainties 〈 6% were found for the non-dimensional parameters isoperimetric ratio, convexity ratio, and ellipticity index. Uncertainty of 2D and 3D size parameters was significantly higher than uncertainty of 1D parameters. The most extreme uncertainties 〉 80% were found for some curvature parameters. Conclusions Uncertainty analysis is essential on the road to clinical translation and use of rupture risk prediction models. Uncertainty quantification of geometric rupture risk parameters provided by this study may help support development of future rupture risk prediction models.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 123
    Publication Date: 2022-07-19
    Description: Simulations and measurements of blood and air flow inside the human circulatory and respiratory system play an increasingly important role in personalized medicine for prevention, diagnosis, and treatment of diseases. This survey focuses on three main application areas. (1) Computational Fluid Dynamics (CFD) simulations of blood flow in cerebral aneurysms assist in predicting the outcome of this pathologic process and of therapeutic interventions. (2) CFD simulations of nasal airflow allow for investigating the effects of obstructions and deformities and provide therapy decision support. (3) 4D Phase-Contrast (4D PC) Magnetic Resonance Imaging (MRI) of aortic hemodynamics supports the diagnosis of various vascular and valve pathologies as well as their treatment. An investigation of the complex and often dynamic simulation and measurement data requires the coupling of sophisticated visualization, interaction, and data analysis techniques. In this paper, we survey the large body of work that has been conducted within this realm. We extend previous surveys by incorporating nasal airflow, addressing the joint investigation of blood flow and vessel wall properties, and providing a more fine-granular taxonomy of the existing techniques. From the survey, we extract major research trends and identify open problems and future challenges. The survey is intended for researchers interested in medical flow but also more general, in the combined visualization of physiology and anatomy, the extraction of features from flow field data and feature-based visualization, the visual comparison of different simulation results, and the interactive visual analysis of the flow field and derived characteristics.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 124
    Publication Date: 2022-07-19
    Description: Volumetry of the cartilage of the knee, as needed for the assessment of knee osteoarthritis (KOA), is typically performed in a tedious and subjective process. We present an automated segmentation-based method for the quantification of cartilage volume by employing 3D Convolutional Neural Networks (CNNs). CNNs were trained in a supervised manner using magnetic resonance imaging data as well as cartilage volumetry readings given by clinical experts for 1378 subjects. It was shown that 3D CNNs can be employed for cartilage volumetry with an accuracy similar to expert volumetry readings. In future, accurate automated cartilage volumetry might support both, diagnosis of KOA as well as assessment of KOA progression via longitudinal analysis.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 125
    Publication Date: 2022-07-19
    Description: Effective dynamics using conditional expectation was proposed in [F. Legoll and T. Lelièvre, Nonlinearity, 2010] to approximate the essential dynamics of high-dimensional diffusion processes along a given reaction coordinate. The approximation error of the effective dynamics when it is used to approximate the behavior of the original dynamics has been considered in recent years. As a continuation of the previous work [F. Legoll, T. Lelièvre, and S. Olla, Stoch. Process. Appl, 2017], in this paper we obtain pathwise estimates for effective dynamics when the reaction coordinate function is either nonlinear or vector-valued.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 126
    Publication Date: 2022-07-19
    Description: Advanced osteoarthritis is a leading cause of knee replacement and loss of functionality. Early detection of risk factors plays an important role in the application of preventive measures. One of the risk factors is the leg alignment which influences the speed of knee cartilage degradation. The ’gold standard’ measurement of leg alignment is done by determining the Hip Knee Ankle (HKA) angle from full lower limb radiographs. Convolutional Neural Networks (CNNs) have gained popularity recently in computer vision. In this thesis we developed methods using CNNs to determine HKA angles from full lower limb radiographs. We trained the CNNs using data from the Osteoarthritis Initiative (OAI). We evaluated our method’s performance by evaluating its agreement to experts measurement and its reliability. Our best performing method shows excellent agreement and reliability levels.
    Language: English
    Type: masterthesis , doc-type:masterThesis
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 127
    Publication Date: 2022-07-19
    Description: In dentistry, software-based medical image analysis and visualization provide efficient and accurate diagnostic and therapy planning capabilities. We present an approach for the automatic recognition of tooth types and positions in digital volume tomography (DVT). By using deep learning techniques in combination with dimensionality reduction through non-planar reformatting of the jaw anatomy, DVT data can be efficiently processed and teeth reliably recognized and classified, even in the presence of imaging artefacts, missing or dislocated teeth. We evaluated our approach, which is based on 2D Convolutional Neural Networks (CNNs), on 118 manually annotated cases of clinical DVT datasets. Our proposed method correctly classifies teeth with an accuracy of 94% within a limit of 2mm distance to ground truth labels.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 128
    Publication Date: 2022-07-19
    Description: In our chapter we are describing how to reconstruct three-dimensional anatomy from medical image data and how to build Statistical 3D Shape Models out of many such reconstructions yielding a new kind of anatomy that not only allows quantitative analysis of anatomical variation but also a visual exploration and educational visualization. Future digital anatomy atlases will not only show a static (average) anatomy but also its normal or pathological variation in three or even four dimensions, hence, illustrating growth and/or disease progression. Statistical Shape Models (SSMs) are geometric models that describe a collection of semantically similar objects in a very compact way. SSMs represent an average shape of many three-dimensional objects as well as their variation in shape. The creation of SSMs requires a correspondence mapping, which can be achieved e.g. by parameterization with a respective sampling. If a corresponding parameterization over all shapes can be established, variation between individual shape characteristics can be mathematically investigated. We will explain what Statistical Shape Models are and how they are constructed. Extensions of Statistical Shape Models will be motivated for articulated coupled structures. In addition to shape also the appearance of objects will be integrated into the concept. Appearance is a visual feature independent of shape that depends on observers or imaging techniques. Typical appearances are for instance the color and intensity of a visual surface of an object under particular lighting conditions, or measurements of material properties with computed tomography (CT) or magnetic resonance imaging (MRI). A combination of (articulated) statistical shape models with statistical models of appearance lead to articulated Statistical Shape and Appearance Models (a-SSAMs).After giving various examples of SSMs for human organs, skeletal structures, faces, and bodies, we will shortly describe clinical applications where such models have been successfully employed. Statistical Shape Models are the foundation for the analysis of anatomical cohort data, where characteristic shapes are correlated to demographic or epidemiologic data. SSMs consisting of several thousands of objects offer, in combination with statistical methods ormachine learning techniques, the possibility to identify characteristic clusters, thus being the foundation for advanced diagnostic disease scoring.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 129
    Publication Date: 2022-07-19
    Description: We present visual analysis methods for the evaluation of tomographic fiber reconstruction algorithms by means of analysis, visual debugging and comparison of reconstructed fibers in materials science. The methods are integrated in a tool (FIAKER) that supports the entire workflow. It enables the analysis of various fiber reconstruction algorithms, of differently parameterized fiber reconstruction algorithms and of individual steps in iterative fiber reconstruction algorithms. Insight into the performance of fiber reconstruction algorithms is obtained by a list‐based ranking interface. A 3D view offers interactive visualization techniques to gain deeper insight, e.g., into the aggregated quality of the examined fiber reconstruction algorithms and parameterizations. The tool was designed in close collaboration with researchers who work with fiber‐reinforced polymers on a daily basis and develop algorithms for tomographic reconstruction and characterization of such materials. We evaluate the tool using synthetic datasets as well as tomograms of real materials. Five case studies certify the usefulness of the tool, showing that it significantly accelerates the analysis and provides valuable insights that make it possible to improve the fiber reconstruction algorithms. The main contribution of the paper is the well‐considered combination of methods and their seamless integration into a visual tool that supports the entire workflow. Further findings result from the analysis of (dis‐)similarity measures for fibers as well as from the discussion of design decisions. It is also shown that the generality of the analytical methods allows a wider range of applications, such as the application in pore space analysis.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 130
    Publication Date: 2022-07-19
    Description: We describe a novel nonlinear statistical shape model basedon differential coordinates viewed as elements of GL+(3). We adopt an as-invariant-as possible framework comprising a bi-invariant Lie group mean and a tangent principal component analysis based on a unique GL+(3)-left-invariant, O(3)-right-invariant metric. Contrary to earlier work that equips the coordinates with a specifically constructed group structure, our method employs the inherent geometric structure of the group-valued data and therefore features an improved statistical power in identifying shape differences. We demonstrate this in experiments on two anatomical datasets including comparison to the standard Euclidean as well as recent state-of-the-art nonlinear approaches to statistical shape modeling.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 131
    Publication Date: 2022-07-19
    Description: In individuals of similar body mass representing closely related species with different lifestyles, muscle architectural properties can be assumed to reflect adaptation to differing, lifestyle-related functional demands. We here employ a fiber recognition algorithm on contrast-enhanced micro-computed tomography (μCT) scans of one specimen each of an arboreal (Sciurus vulgaris) and a fossorial (Spermophilus citellus) sciuromorph rodent. The automated approach accounts for potential heterogeneity of architectural properties within a muscle by analyzing all fascicles that compose a muscle. Muscle architectural properties (volume, fascicle length, and orientation, and force-generating capacity) were quantified in 14 hindlimb (hip, knee, and ankle) extensor muscles and compared between specimens. We expected the arboreal squirrel to exhibit greater force-generating capacity and a greater capacity for length change allowing more powerful hindlimb extension. Generally and mostly matching our expectations, the S. vulgaris specimen had absolutely and relatively larger extensor muscles than the S. citellus specimen which were thus metabolically more expensive and demonstrate the relatively larger investment into powerful hindlimb extension necessary in the arboreal context. We conclude that detailed quantitative data on hindlimb muscle internal structure as was gathered here for a very limited sample further lends support to the notion that muscle architecture reflects adaptation to differential functional demands in closely related species with different locomotor behaviors and lifestyles.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 132
    Publication Date: 2022-07-19
    Description: We consider the problem of routing a data packet through the visibility graph of a polygonal domain P with n vertices and h holes. We may preprocess P to obtain a "label" and a "routing table" for each vertex of P. Then, we must be able to route a data packet between any two vertices p and q of P, where each step must use only the label of the target node q and the routing table of the current node. For any fixed epsilon 〉 0, we present a routing scheme that always achieves a routing path whose length exceeds the shortest path by a factor of at most 1 + epsilon. The labels have O(log n) bits, and the routing tables are of size O(((epsilon^-1)+h)log n). The preprocessing time is O((n^2)log n). It can be improved to O(n^2) for simple polygons.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 133
    Publication Date: 2022-07-19
    Description: Quantitative photoacoustic tomography aims recover the spatial distribution of absolute chromophore concentrations and their ratios from deep tissue, high-resolution images. In this study, a model-based inversion scheme based on a Monte-Carlo light transport model is experimentally validated on 3-D multispectral images of a tissue phantom acquired using an all-optical scanner with a planar detection geometry. A calibrated absorber allowed scaling of the measured data during the inversion, while an acoustic correction method was employed to compensate the effects of limited view detection. Chromophore- and fluence-dependent step sizes and Adam optimization were implemented to achieve rapid convergence. High resolution 3-D maps of absolute concentrations and their ratios were recovered with high accuracy. Potential applications of this method include quantitative functional and molecular photoacoustic tomography of deep tissue in preclinical and clinical studies.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 134
    Publication Date: 2022-07-19
    Description: In dentistry, software-based medical image analysis and visualization provide effcient and accurate diagnostic and therapy planning capabilities. We present an approach for the automatic recognition of tooth types and positions in digital volume tomography (DVT). By using deep learning techniques in combination with dimension reduction through non-planar reformatting of the jaw anatomy, DVT data can be effciently processed and teeth reliably recognized and classified, even in the presence of imaging artefacts, missing or dislocated teeth. We evaluated our approach, which is based on 2D Convolutional Neural Networks (CNNs), on 118 manually annotated cases of clinical DVT datasets. Our proposed method correctly classifies teeth with an accuracy of 94% within a limit of 2mm distancr to ground truth landmarks.
    Language: English
    Type: masterthesis , doc-type:masterThesis
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 135
    Publication Date: 2021-02-05
    Description: Mathematische Algorithmen können durch Vorhersage von Unsicherheiten optimierte OP-Pläne berechnen, sodass mehrere Zielkriterien wie Überstunden, Wartezeit und Ausfälle im OP minimiert werden.
    Language: German
    Type: other , doc-type:Other
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 136
    Publication Date: 2021-02-02
    Description: We study the Flight Planning Problem for a single aircraft, where we look for a minimum cost path in the airway network, a directed graph. Arc evaluation, such as weather computation, is computationally expensive due to non-linear functions, but required for exactness. We propose several pruning methods to thin out the search space for Dijkstra's algorithm before the query commences. We do so by using innate problem characteristics such as an aircraft's tank capacity, lower and upper bounds on the total costs, and in particular, we present a method to reduce the search space even in the presence of regional crossing costs. We test all pruning methods on real-world instances, and show that incorporating crossing costs into the pruning process can reduce the number of nodes by 90\% in our setting.
    Language: English
    Type: article , doc-type:article
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 137
    Publication Date: 2020-03-09
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 138
    Publication Date: 2021-02-01
    Description: As data processing evolves towards large scale, distributed platforms, the network will necessarily play a substantial role in achieving efficiency and performance. Increasingly, switches, network cards, and protocols are becoming more flexible while programmability at all levels (aka, software defined networks) opens up many possibilities to tailor the network to data processing applications and to push processing down to the network elements. In this paper, we propose DPI, an interface providing a set of simple yet powerful abstractions flexible enough to exploit features of modern networks (e.g., RDMA or in-network processing) suitable for data processing. Mirroring the concept behind the Message Passing Interface (MPI) used extensively in high-performance computing, DPI is an interface definition rather than an implementation so as to be able to bridge different networking technologies and to evolve with them. In the paper we motivate and discuss key primitives of the interface and present a number of use cases that show the potential of DPI for data-intensive applications, such as analytic engines and distributed database systems.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 139
    Publication Date: 2020-08-05
    Description: Planning rolling stock movements in industrial passenger railway applications isa long-term process based on timetables which are also often valid for long periods of time. For these timetables and rotation plans, i.e., plans of railway vehicle movements are constructed as templates for these periods. During operation the rotation plans are affected by all kinds of unplanned events. An unusal example for that is the collapse of a tunnel ceiling near Rastatt in southern Germany due to construction works related to the renewal of the central station in Stuttgart. As a result the main railway connection between Stuttgart and Frankfurt am Main, located on top of the tunnel, had to be closed from August 12th to October 2nd 2017. This had a major impact on the railway network in southern Germany. Hence, all rotation plans and train schedules for both passenger and cargo traffic had to be revised. In this paper we focus on a case study for this situation and compute new rotation plans via mixed integer programming for the ICE high speed fleet of DB Fernverkehr AG one of the largest passenger railway companies in Europe. In our approach we take care of some side constraints to ensure a smooth continuation of the rotation plans after the disruption has ended.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 140
    Publication Date: 2020-08-05
    Description: Since railway companies have to apply for long-term public contracts to operate railway lines in public tenders, the question how they can estimate the operating cost for long-term periods adequately arises naturally. We consider a rolling stock rotation problem for a time period of ten years, which is based on a real world instance provided by an industry partner. We use a two stage approach for the cost estimation of the required rolling stock. In the first stage, we determine a weekly rotation plan. In the second stage, we roll out this weekly rotation plan for a longer time period and incorporate scheduled maintenance treatments. We present a heuristic approach and a mixed integer programming model to implement the process of the second stage. Finally, we discuss computational results for a real world tendering scenario.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 141
    Publication Date: 2020-08-05
    Description: In this paper, we consider the Cyclic Crew Rostering Problem with Fairness Requirements (CCRP-FR). In this problem, attractive cyclic rosters have to be constructed for groups of employees, considering multiple, a priori determined, fairness levels. The attractiveness follows from the structure of the rosters (e.g., sufficient rest times and variation in work), whereas fairness is based on the work allocation among the different roster groups. We propose a three-phase heuristic for the CCRP-FR, which combines the strength of column generation techniques with a large-scale neighborhood search algorithm. The design of the heuristic assures that good solutions for all fairness levels are obtained quickly, and can still be further improved if additional running time is available. We evaluate the performance of the algorithm using real-world data from Netherlands Railways, and show that the heuristic finds close to optimal solutions for many of the considered instances. In particular, we show that the heuristic is able to quickly find major improvements upon the current sequential practice: For most instances, the heuristic is able to increase the attractiveness by at least 20% in just a few minutes.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 142
    Publication Date: 2020-03-09
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 143
    Publication Date: 2021-10-28
    Description: The recent article "A Bayesian conjugate gradient method" by Cockayne, Oates, Ipsen, and Girolami proposes an approximately Bayesian iterative procedure for the solution of a system of linear equations, based on the conjugate gradient method, that gives a sequence of Gaussian/normal estimates for the exact solution. The purpose of the probabilistic enrichment is that the covariance structure is intended to provide a posterior measure of uncertainty or confidence in the solution mean. This note gives some comments on the article, poses some questions, and suggests directions for further research.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 144
    Publication Date: 2020-12-01
    Description: The Periodic Event Scheduling Problem is a well-studied NP-hard problem with applications in public transportation to find good periodic timetables. Among the most powerful heuristics to solve the periodic timetabling problem is the modulo network simplex method. In this paper, we consider the more difficult version with integrated passenger routing and propose a refined integrated variant to solve this problem on real-world-based instances.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 145
    Publication Date: 2020-03-09
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 146
    Publication Date: 2020-01-28
    Description: Based on experimental drug concentration profiles in healthy as well as tape-stripped ex vivo human skin, we model the penetration of the antiinflammatory drug dexamethasone into the skin layers by the one-dimensional generalized diffusion equation. We estimate the position-dependent free-energy and diffusivity profiles by solving the conjugated minimization problem, in which the only inputs are concentration profiles of dexamethasone in skin at three consecutive penetration times. The resulting free-energy profiles for damaged and healthy skin show only minor differences. In contrast, the drug diffusivity in the first 10 μm of the upper skin layer of damaged skin is 200-fold increased compared to healthy skin, which reflects the corrupted barrier function of tape-stripped skin. For the case of healthy skin, we examine the robustness of our method by analyzing the behavior of the extracted skin parameters when the number of input and output parameters are reduced. We also discuss techniques for the regularization of our parameter extraction method.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 147
    Publication Date: 2020-08-05
    Description: The most important ingredient for solving mixed-integer nonlinear programs (MINLPs) to global epsilon-optimality with spatial branch and bound is a tight, computationally tractable relaxation. Due to both theoretical and practical considerations, relaxations of MINLPs are usually required to be convex. Nonetheless, current optimization solver can often successfully handle a moderate presence of nonconvexities, which opens the door for the use of potentially tighter nonconvex relaxations. In this work, we exploit this fact and make use of a nonconvex relaxation obtained via aggregation of constraints: a surrogate relaxation. These relaxations were actively studied for linear integer programs in the 70s and 80s, but they have been scarcely considered since. We revisit these relaxations in an MINLP setting and show the computational benefits and challenges they can have. Additionally, we study a generalization of such relaxation that allows for multiple aggregations simultaneously and present the first algorithm that is capable of computing the best set of aggregations. We propose a multitude of computational enhancements for improving its practical performance and evaluate the algorithm’s ability to generate strong dual bounds through extensive computational experiments.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 148
    Publication Date: 2021-03-12
    Description: Our project aimed at building an in silico model based on our recently developed in vitro osteoarthritis (OA) model seeking for refinement of the model to enhance validity and translatability towards the more sophisticated simulation of OA. In detail, the previously 3D in vitro model is based on 3D chondrogenic constructs generated solely from human bone marrow derived mesenchymal stromal cells (hMSCs). Besides studying the normal state of the model over 3 weeks, the in vitro model was treated with interleukin-1β (IL-1β) and tumor necrosis factor alpha (TNFα) to mimic an OA-like environment.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 149
    Publication Date: 2022-01-07
    Description: Solvers for partial differential equations (PDEs) are one of the cornerstones of computational science. For large problems, they involve huge amounts of data that need to be stored and transmitted on all levels of the memory hierarchy. Often, bandwidth is the limiting factor due to the relatively small arithmetic intensity, and increasingly due to the growing disparity between computing power and bandwidth. Consequently, data compression techniques have been investigated and tailored towards the specific requirements of PDE solvers over the recent decades. This paper surveys data compression challenges and discusses examples of corresponding solution approaches for PDE problems, covering all levels of the memory hierarchy from mass storage up to the main memory. We illustrate concepts for particular methods, with examples, and give references to alternatives.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 150
    Publication Date: 2020-05-14
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 151
    Publication Date: 2020-05-14
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 152
    Publication Date: 2021-02-01
    Description: A colloidal particle is driven across a temporally oscillating one-dimensional optical potential energy landscape and its particle motion is analysed. Different modes of dynamic mode locking are observed and are confirmed with the use of phase portraits. The effect of the oscillation frequency on the mode locked step width is addressed and the results are discussed in light of a high-frequency theory and compared to simulations. Furthermore, the influence of the coupling between the particle and the optical landscape on mode locking is probed by increasing the maximum depth of the optical landscape. Stronger coupling is seen to increase the width of mode locked steps. Finally, transport across the temporally oscillating landscape is studied by measuring the effective diffusion coefficient of a mobile particle, which is seen to be highly sensitive to the driving velocity and mode locking.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 153
    Publication Date: 2020-11-13
    Language: English
    Type: masterthesis , doc-type:masterThesis
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 154
    Publication Date: 2020-03-09
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 155
    Publication Date: 2020-02-27
    Language: English
    Type: doctoralthesis , doc-type:doctoralThesis
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 156
    Publication Date: 2020-02-27
    Language: German
    Type: bachelorthesis , doc-type:bachelorThesis
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 157
    Publication Date: 2020-02-27
    Language: English
    Type: bachelorthesis , doc-type:bachelorThesis
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 158
    Publication Date: 2020-03-09
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 159
    Publication Date: 2020-02-27
    Language: English
    Type: masterthesis , doc-type:masterThesis
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 160
    Publication Date: 2020-02-27
    Language: English
    Type: bachelorthesis , doc-type:bachelorThesis
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 161
    Publication Date: 2020-03-19
    Description: The reaction counts chemical master equation (CME) is a high-dimensional variant of the classical population counts CME. In the reaction counts CME setting, we count the reactions which have fired over time rather than monitoring the population state over time. Since a reaction either fires or not, the reaction counts CME transitions are only forward stepping. Typically there are more reactions in a system than species, this results in the reaction counts CME being higher in dimension, but simpler in dynamics. In this work, we revisit the reaction counts CME framework and its key theoretical results. Then we will extend the theory by exploiting the reactions counts’ forward stepping feature, by decomposing the state space into independent continuous-time Markov chains (CTMC). We extend the reaction counts CME theory to derive analytical forms and estimates for the CTMC decomposition of the CME. This new theory gives new insights into solving hitting times-, rare events-, and a priori domain construction problems.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 162
    Publication Date: 2020-12-14
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 163
    Publication Date: 2020-03-09
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 164
    Publication Date: 2022-06-13
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 165
    Publication Date: 2022-04-11
    Description: Mathematical publications are an important resource for the devel- opment of machine-based methods for mathematical knowledge man- agement. This article describes the publication-based approach to improve the information and the access to two important classes of mathematical research, mathematical software and mathematical algo- rithms. The publication-based approach is based on analyzing links and the structure of mathematical publications. It has been used to build the swMATH service which provides comprehensive information about mathematical software and algorithms.
    Language: English
    Type: proceedings , doc-type:Other
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 166
    Publication Date: 2022-05-09
    Description: We propose a simple and general online method to measure the search progress within the Branch-and-Bound algorithm, from which we estimate the size of the remaining search tree. We then show how this information can help solvers algorithmically at runtime by designing a restart strategy for Mixed-Integer Programming (MIP) solvers that decides whether to restart the search based on the current estimate of the number of remaining nodes in the tree. We refer to this type of algorithm as clairvoyant. Our clairvoyant restart strategy outperforms a state-of-the-art solver on a large set of publicly available MIP benchmark instances. It is implemented in the MIP solver SCIP and will be available in future releases.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 167
    Publication Date: 2022-06-10
    Description: Urban transportation systems are subject to a high level of variation and fluctuation in demand over the day. When this variation and fluctuation are observed in both time and space, it is crucial to develop line plans that are responsive to demand. A multi-period line planning approach that considers a changing demand during the planning horizon is proposed. If such systems are also subject to limitations of resources, a dynamic transfer of resources from one line to another throughout the planning horizon should also be considered. A mathematical modelling framework is developed to solve the line planning problem with transfer of resources during a finite length planning horizon of multiple periods. We analyze whether or not multi-period solutions outperform single period solutions in terms of feasibility and relevant costs. The importance of demand variation on multi-period solutions is investigated. We evaluate the impact of resource transfer constraints on the effectiveness of solutions. We also study the effect of line type designs and question the choice of period lengths along with the problem parameters that are significant for and sensitive to the optimality of solutions.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 168
    Publication Date: 2022-07-07
    Language: English
    Type: doctoralthesis , doc-type:doctoralThesis
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 169
    Publication Date: 2022-07-19
    Description: We present a method for the automated segmentation of knee bones and cartilage from magnetic resonance imaging (MRI) that combines a priori knowledge of anatomical shape with Convolutional Neural Networks (CNNs).The proposed approach incorporates 3D Statistical Shape Models (SSMs) as well as 2D and 3D CNNs to achieve a robust and accurate segmentation of even highly pathological knee structures.The shape models and neural networks employed are trained using data from the Osteoarthritis Initiative (OAI) and the MICCAI grand challenge "Segmentation of Knee Images 2010" (SKI10), respectively. We evaluate our method on 40 validation and 50 submission datasets from the SKI10 challenge.For the first time, an accuracy equivalent to the inter-observer variability of human readers is achieved in this challenge.Moreover, the quality of the proposed method is thoroughly assessed using various measures for data from the OAI, i.e. 507 manual segmentations of bone and cartilage, and 88 additional manual segmentations of cartilage. Our method yields sub-voxel accuracy for both OAI datasets. We make the 507 manual segmentations as well as our experimental setup publicly available to further aid research in the field of medical image segmentation.In conclusion, combining localized classification via CNNs with statistical anatomical knowledge via SSMs results in a state-of-the-art segmentation method for knee bones and cartilage from MRI data.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 170
    Publication Date: 2022-07-19
    Description: To assess the influence of the alkali-silica reaction (ASR) on pavement concrete 3D-CT imaging has been applied to concrete samples. Prior to imaging these samples have been drilled out of a concrete beam pre-damaged by fatigue loading. The resulting high resolution 3D-CT images consist of several gigabytes of voxels. Current desktop computers can visualize such big datasets without problems but a visual inspection or manual segmentation of features such as cracks by experts can only be carried out on a few slices. A quantitative analysis of cracks requires a segmentation of the whole specimen which could only be done by an automatic feature detection. This arises the question of the reliability of an automatic crack detection algorithm, its certainty and limitations. Does the algorithm find all cracks? Does it find too many cracks? Can parameters of that algorithm, once identified as good, be applied to other samples as well? Can ensemble computing with many crack parameters overcome the difficulties with parameter finding? By means of a crack detection algorithm based on shape recognition (template matching) these questions will be discussed. Since the author has no access to reliable ground truth data of cracks the assessment of the certainty of the automatic crack is restricted to visual inspection by experts. Therefore, an artificial dataset based on a combination of manually segmented cracks processed together with simple image processing algorithms is used to quantify the accuracy of the crack detection algorithm. Part of the evaluation of cracks in concrete samples is the knowledge of the surrounding material. The surrounding material can be used to assess the detected cracks, e.g. micro-cracks within the aggregate-matrix interface may be starting points for cracks on a macro scale. Furthermore, the knowledge of the surrounding material can help to find better parameter sets for the crack detection itself because crack characteristics may vary depending on their surrounding material. Therefore, in addition to a crack detection a complete segmentation of the sample into the components of concrete, such as aggregates, cement matrix and pores is needed. Since such a segmentation task cannot be done manually due to the amount of data, an approach utilizing convolutional neuronal networks stemming from a medical application has been applied. The learning phase requires a ground truth i.e. a segmentation of the components. This has to be created manually in a time-consuming task. However, this segmentation can be used for a quantitative evaluation of the automatic segmentation afterwards. Even though that work has been performed as a short term subtask of a bigger project funded by the German Research Foundation (DFG) this paper discusses problems which may arise in similar projects, too.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 171
    Publication Date: 2022-07-19
    Description: We present a novel approach for nonlinear statistical shape modeling that is invariant under Euclidean motion and thus alignment-free. By analyzing metric distortion and curvature of shapes as elements of Lie groups in a consistent Riemannian setting, we construct a framework that reliably handles large deformations. Due to the explicit character of Lie group operations, our non-Euclidean method is very efficient allowing for fast and numerically robust processing. This facilitates Riemannian analysis of large shape populations accessible through longitudinal and multi-site imaging studies providing increased statistical power. We evaluate the performance of our model w.r.t. shape-based classification of pathological malformations of the human knee and show that it outperforms the standard Euclidean as well as a recent nonlinear approach especially in presence of sparse training data. To provide insight into the model’s ability of capturing natural biological shape variability, we carry out an analysis of specificity and generalization ability.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 172
    Publication Date: 2022-07-19
    Description: Background: Although several studies have provided insights into the role of long non-coding RNAs (lncRNAs), the majority of them have unknown function. Recent evidence has shown the importance of both lncRNAs and chromatin interactions in transcriptional regulation. Although network-based methods, mainly exploiting gene-lncRNA co-expression, have been applied to characterize lncRNA of unknown function by means of ’guilt-by-association’, no strategy exists so far which identifies mRNA-lncRNA functional modules based on the 3D chromatin interaction graph. Results: To better understand the function of chromatin interactions in the context of lncRNA-mediated gene regulation, we have developed a multi-step graph analysis approach to examine the RNA polymerase II ChIA-PET chromatin interaction network in the K562 human cell line. We have annotated the network with gene and lncRNA coordinates, and chromatin states from the ENCODE project. We used centrality measures, as well as an adaptation of our previously developed Markov State Models (MSM) clustering method, to gain a better understanding of lncRNAs in transcriptional regulation. The novelty of our approach resides in the detection of fuzzy regulatory modules based on network properties and their optimization based on co-expression analysis between genes and gene-lncRNA pairs. This results in our method returning more bona fide regulatory modules than other state-of-the art approaches for clustering on graphs. Conclusions: Interestingly, we find that lncRNA network hubs tend to be significantly enriched in evolutionary conserved lncRNAs and enhancer-like functions. We validated regulatory functions for well known lncRNAs, such as MALAT1 and the enhancer-like lncRNA FALEC. In addition, by investigating the modular structure of bigger components we mine putative regulatory functions for uncharacterized lncRNAs.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 173
    Publication Date: 2022-07-19
    Description: Statistical Shape Models (SSMs) are a proven means for model-based 3D anatomy reconstruction from medical image data. In orthopaedics and biomechanics, SSMs are increasingly employed to individualize measurement data or to create individualized anatomical models to which implants can be adapted to or functional tests can be performed on. For modeling and analysis of articulated structures, so called articulated SSMs (aSSMs) have been developed. However, a missing feature of aSSMs is the consideration of collisions in the course of individual fitting and articulation. The aim of our work was to develop aSSMs that handle collisions between components correctly. That way it becomes possible to adjust shape and articulation in view of a physically and geometrically plausible individualization. To be able to apply collision-aware aSSMs in simulation and optimisation, our approach is based on an e� cient collision detection method employing Graphics Processing Units (GPUs).
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 174
    Publication Date: 2022-07-19
    Description: Quantification of magnetic resonance (MR)-based relaxation parameters of tendons and ligaments is challenging due to their very short transverse relaxation times, requiring application of ultra-short echo-time (UTE) imaging sequences. We quantify both T1 and T2⁎ in the quadriceps and patellar tendons of healthy volunteers at a field strength of 3 T and visualize the results based on 3D segmentation by using bivariate histogram analysis. We applied a 3D ultra-short echo-time imaging sequence with either variable repetition times (VTR) or variable flip angles (VFA) for T1 quantification in combination with multi-echo acquisition for extracting T2⁎. The values of both relaxation parameters were subsequently binned for bivariate histogram analysis and corresponding cluster identification, which were subsequently visualized. Based on manually-drawn regions of interest in the tendons on the relaxation parameter maps, T1 and T2⁎ boundaries were selected in the bivariate histogram to segment the quadriceps and patellar tendons and visualize the relaxation times by 3D volumetric rendering. Segmentation of bone marrow, fat, muscle and tendons was successfully performed based on the bivariate histogram analysis. Based on the segmentation results mean T2⁎ relaxation times, over the entire tendon volumes averaged over all subjects, were 1.8 ms ± 0.1 ms and 1.4 ms ± 0.2 ms for the patellar and quadriceps tendons, respectively. The mean T1 value of the patellar tendon, averaged over all subjects, was 527 ms ± 42 ms and 476 ms ± 40 ms for the VFA and VTR acquisitions, respectively. The quadriceps tendon had higher mean T1 values of 662 ms ± 97 ms (VFA method) and 637 ms ± 40 ms (VTR method) compared to the patellar tendon. 3D volumetric visualization of the relaxation times revealed that T1 values are not constant over the volume of both tendons, but vary locally. This work provided additional data to build upon the scarce literature available on relaxation times in the quadriceps and patellar tendons. We were able to segment both tendons and to visualize the relaxation parameter distributions over the entire tendon volumes.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 175
    Publication Date: 2022-07-19
    Language: English
    Type: bookpart , doc-type:bookPart
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 176
    Publication Date: 2022-07-19
    Description: In our chapter we are describing how to reconstruct three-dimensional anatomy from medical image data and how to build Statistical 3D Shape Models out of many such reconstructions yielding a new kind of anatomy that not only allows quantitative analysis of anatomical variation but also a visual exploration and educational visualization. Future digital anatomy atlases will not only show a static (average) anatomy but also its normal or pathological variation in three or even four dimensions, hence, illustrating growth and/or disease progression. Statistical Shape Models (SSMs) are geometric models that describe a collection of semantically similar objects in a very compact way. SSMs represent an average shape of many three-dimensional objects as well as their variation in shape. The creation of SSMs requires a correspondence mapping, which can be achieved e.g. by parameterization with a respective sampling. If a corresponding parameterization over all shapes can be established, variation between individual shape characteristics can be mathematically investigated. We will explain what Statistical Shape Models are and how they are constructed. Extensions of Statistical Shape Models will be motivated for articulated coupled structures. In addition to shape also the appearance of objects will be integrated into the concept. Appearance is a visual feature independent of shape that depends on observers or imaging techniques. Typical appearances are for instance the color and intensity of a visual surface of an object under particular lighting conditions, or measurements of material properties with computed tomography (CT) or magnetic resonance imaging (MRI). A combination of (articulated) statistical shape models with statistical models of appearance lead to articulated Statistical Shape and Appearance Models (a-SSAMs).After giving various examples of SSMs for human organs, skeletal structures, faces, and bodies, we will shortly describe clinical applications where such models have been successfully employed. Statistical Shape Models are the foundation for the analysis of anatomical cohort data, where characteristic shapes are correlated to demographic or epidemiologic data. SSMs consisting of several thousands of objects offer, in combination with statistical methods ormachine learning techniques, the possibility to identify characteristic clusters, thus being the foundation for advanced diagnostic disease scoring.
    Language: English
    Type: bookpart , doc-type:bookPart
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 177
    Publication Date: 2022-07-19
    Description: We present a novel approach for nonlinear statistical shape modeling that is invariant under Euclidean motion and thus alignment-free. By analyzing metric distortion and curvature of shapes as elements of Lie groups in a consistent Riemannian setting, we construct a framework that reliably handles large deformations. Due to the explicit character of Lie group operations, our non-Euclidean method is very efficient allowing for fast and numerically robust processing. This facilitates Riemannian analysis of large shape populations accessible through longitudinal and multi-site imaging studies providing increased statistical power. We evaluate the performance of our model w.r.t. shape-based classification of pathological malformations of the human knee and show that it outperforms the standard Euclidean as well as a recent nonlinear approach especially in presence of sparse training data. To provide insight into the model's ability of capturing natural biological shape variability, we carry out an analysis of specificity and generalization ability.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Format: application/zip
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 178
    Publication Date: 2022-07-19
    Description: Various 3D imaging techniques are routinely used to examine biological materials, the results of which are usually a stack of grayscale images. In order to quantify structural aspects of the biological materials, however, they must first be extracted from the dataset in a process called segmentation. If the individual structures to be extracted are in contact or very close to each other, distance-based segmentation methods utilizing the Euclidean distance transform are commonly employed. Major disadvantages of the Euclidean distance transform, however, are its susceptibility to noise (very common in biological data), which often leads to incorrect segmentations (i.e. poor separation of objects of interest), and its limitation of being only effective for roundish objects. In the present work, we propose an alternative distance transform method, the random-walk distance transform, and demonstrate its effectiveness in high-throughput segmentation of three microCT datasets of biological tilings (i.e. structures composed of a large number of similar repeating units). In contrast to the Euclidean distance transform, this random-walk approach represents the global, rather than the local, geometric character of the objects to be segmented and, thus, is less susceptible to noise. In addition, it is directly applicable to structures with anisotropic shape characteristics. Using three case studies—stingray tessellated cartilage, starfish dermal endoskeleton, and the prismatic layer of bivalve mollusc shell—we provide a typical workflow for the segmentation of tiled structures, describe core image processing concepts that are underused in biological research, and show that for each study system, large amounts of biologically-relevant data can be rapidly segmented, visualized and analyzed.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 179
    Publication Date: 2022-07-19
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 180
    Publication Date: 2022-07-19
    Description: In many applications, geodesic hierarchical models are adequate for the study of temporal observations. We employ such a model derived for manifold-valued data to Kendall's shape space. In particular, instead of the Sasaki metric, we adapt a functional-based metric, which increases the computational efficiency and does not require the implementation of the curvature tensor. We propose the corresponding variational time discretization of geodesics and apply the approach for the estimation of group trends and statistical testing of 3D shapes derived from an open access longitudinal imaging study on osteoarthritis.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 181
    Publication Date: 2022-07-19
    Description: In many applications, geodesic hierarchical models are adequate for the study of temporal observations. We employ such a model derived for manifold-valued data to Kendall's shape space. In particular, instead of the Sasaki metric, we adapt a functional-based metric, which increases the computational efficiency and does not require the implementation of the curvature tensor. We propose the corresponding variational time discretization of geodesics and apply the approach for the estimation of group trends and statistical testing of 3D shapes derived from an open access longitudinal imaging study on osteoarthritis.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 182
    Publication Date: 2022-07-19
    Description: We present a method for the automated segmentation of knee bones and cartilage from magnetic resonance imaging that combines a priori knowledge of anatomical shape with Convolutional Neural Networks (CNNs). The proposed approach incorporates 3D Statistical Shape Models (SSMs) as well as 2D and 3D CNNs to achieve a robust and accurate segmentation of even highly pathological knee structures. The shape models and neural networks employed are trained using data of the Osteoarthritis Initiative (OAI) and the MICCAI grand challenge "Segmentation of Knee Images 2010" (SKI10), respectively. We evaluate our method on 40 validation and 50 submission datasets of the SKI10 challenge. For the first time, an accuracy equivalent to the inter-observer variability of human readers has been achieved in this challenge. Moreover, the quality of the proposed method is thoroughly assessed using various measures for data from the OAI, i.e. 507 manual segmentations of bone and cartilage, and 88 additional manual segmentations of cartilage. Our method yields sub-voxel accuracy for both OAI datasets. We made the 507 manual segmentations as well as our experimental setup publicly available to further aid research in the field of medical image segmentation. In conclusion, combining statistical anatomical knowledge via SSMs with the localized classification via CNNs results in a state-of-the-art segmentation method for knee bones and cartilage from MRI data.
    Language: English
    Type: researchdata , doc-type:ResearchData
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 183
    Publication Date: 2022-07-19
    Description: Volumetry of cartilage of the knee is needed for knee osteoarthritis (KOA) assessment. It is typically performed manually in a tedious and subjective process. We developed a method for an automated, segmentation-based quantification of cartilage volume by employing 3D Convolutional Neural Networks (CNNs). CNNs were trained in a supervised manner using magnetic resonance imaging data and cartilage volumetry readings performed by clinical experts for 1378 subjects provided by the Osteoarthritis Initiative. It was shown that 3D CNNs are able to achieve volume measures comparable to the magnitude of variation between expert readings and the real in vivo situation. In the future, accurate automated cartilage volumetry might support both, diagnosis of KOA as well as longitudinal analysis of KOA progression.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 184
    Publication Date: 2022-07-19
    Description: Surgical tool detection is attracting increasing attention from the medical image analysis community. The goal generally is not to precisely locate tools in images, but rather to indicate which tools are being used by the surgeon at each instant. The main motivation for annotating tool usage is to design efficient solutions for surgical workflow analysis, with potential applications in report generation, surgical training and even real-time decision support. Most existing tool annotation algorithms focus on laparoscopic surgeries. However, with 19 million interventions per year, the most common surgical procedure in the world is cataract surgery. The CATARACTS challenge was organized in 2017 to evaluate tool annotation algorithms in the specific context of cataract surgery. It relies on more than nine hours of videos, from 50 cataract surgeries, in which the presence of 21 surgical tools was manually annotated by two experts. With 14 participating teams, this challenge can be considered a success. As might be expected, the submitted solutions are based on deep learning. This paper thoroughly evaluates these solutions: in particular, the quality of their annotations are compared to that of human interpretations. Next, lessons learnt from the differential analysis of these solutions are discussed. We expect that they will guide the design of efficient surgery monitoring tools in the near future.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 185
    Publication Date: 2022-07-19
    Description: In many applications, it is often necessary to sample the mean value of certain quantity with respect to a probability measure $\mu$ on the level set of a smooth function ξ:R^d→R^k, 1≤k〈d. A specially interesting case is the so-called conditional probability measure, which is useful in the study of free energy calculation and model reduction of diffusion processes. By Birkhoff's ergodic theorem, one approach to estimate the mean value is to compute the time average along an infinitely long trajectory of an ergodic diffusion process on the level set whose invariant measure is $\mu$. Motivated by the previous work of Ciccotti, Lelièvre, and Vanden-Eijnden, as well as the work of Lelièvre, Rousset, and Stoltz, in this paper we construct a family of ergodic diffusion processes on the level set of ξ whose invariant measures coincide with the given one. For the conditional measure, in particular, we show that the corresponding SDEs of the constructed ergodic processes have relatively simple forms, and, moreover, we propose a consistent numerical scheme which samples the conditional measure asymptotically. The numerical scheme doesn't require computing the second derivatives of ξ and the error estimates of its long time sampling efficiency are obtained.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 186
    Publication Date: 2022-07-19
    Description: The fiber surface generalizes the popular isosurface to multi-fields, so that pre-images can be visualized as surfaces. As with the isosurface, however, the fiber surface suffers from visual occlusion. We propose to avoid such occlusion by restricting the components to only the relevant ones with a new component-wise flexing algorithm. The approach, flexible fiber surface, generalizes the manipulation idea found in the flexible isosurface for the fiber surface. The flexible isosurface in the original form, however, relies on the contour tree. For the fiber surface, this corresponds to the Reeb space, which is challenging for both the computation and user interaction. We thus take a Reeb-free approach, in which one does not compute the Reeb space. Under this constraint, we generalize a few selected interactions in the flexible isosurface and discuss the implication of the restriction.
    Language: English
    Type: incollection , doc-type:Other
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 187
    Publication Date: 2022-07-19
    Description: Successful functional surgery on the nasal framework requires reliable and comprehensive diagnosis. In this regard, the authors introduce a new methodology: Digital Analysis of Nasal Airflow (diANA). It is based on computational fluid dynamics, a statistical shape model of the healthy nasal cavity and rhinologic expertise. diANA necessitates an anonymized tomographic dataset of the paranasal sinuses including the complete nasal cavity and, when available, clinical information. The principle of diANA is to compare the morphology and the respective airflow of an individual nose with those of a reference. This enablesmorphometric aberrations and consecutive flow field anomalies to localize and quantify within a patient’s nasal cavity. Finally, an elaborated expert opinion with instructive visualizations is provided. Using diANA might support surgeons in decision-making, avoiding unnecessary surgery, gaining more precision, and target-orientation for indicated operations.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 188
    Publication Date: 2022-07-19
    Description: The fiber surface generalizes the popular isosurface to multi-fields, so that pre-images can be visualized as surfaces. As with the isosurface, however, the fiber surface suffers from visual occlusion. We propose to avoid such occlusion by restricting the components to only the relevant ones with a new component-wise flexing algorithm. The approach, flexible fiber surface, generalizes the manipulation idea found in the flexible isosurface for the fiber surface. The flexible isosurface in the original form, however, relies on the contour tree. For the fiber surface, this corresponds to the Reeb space, which is challenging for both the computation and user interaction. We thus take a Reeb-free approach, in which one does not compute the Reeb space. Under this constraint, we generalize a few selected interactions in the flexible isosurface and discuss the implication of the restriction.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 189
    Publication Date: 2022-07-19
    Description: Quantitative photoacoustic tomography aims to recover maps of the local concentrations of tissue chromophores from multispectral images. While model-based inversion schemes are promising approaches, major challenges to their practical implementation include the unknown fluence distribution and the scale of the inverse problem. This paper describes an inversion scheme based on a radiance Monte Carlo model and an adjoint-assisted gradient optimization that incorporates fluence-dependent step sizes and adaptive moment estimation. The inversion is shown to recover absolute chromophore concentrations, blood oxygen saturation and the Grüneisen parameter from in silico 3D phantom images for different radiance approximations. The scattering coefficient was assumed to be homogeneous and known a priori.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 190
    Publication Date: 2022-07-19
    Description: Quantitative photoacoustic tomography aims to recover maps of the local concentrations of tissue chromophores from multispectral images. While model-based inversion schemes are promising approaches, major challenges to their practical implementation include the unknown fluence distribution and the scale of the inverse problem. This paper describes an inversion scheme based on a radiance Monte Carlo model and an adjoint-assisted gradient optimization that incorporates fluence-dependent step sizes and adaptive moment estimation. The inversion is shown to recover absolute chromophore concentrations, blood oxygen saturation and the Grüneisen parameter from in silico 3D phantom images for different radiance approximations. The scattering coefficient was assumed to be homogeneous and known a priori.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 191
    Publication Date: 2022-07-19
    Description: Various 3D imaging techniques are routinely used to examine biological materials, the results of which are usually a stack of grayscale images. In order to quantify structural aspects of the biological materials, however, they must first be extracted from the dataset in a process called segmentation. If the individual structures to be extracted are in contact or very close to each other, distance-based segmentation methods utilizing the Euclidean distance transform are commonly employed. Major disadvantages of the Euclidean distance transform, however, are its susceptibility to noise (very common in biological data), which often leads to incorrect segmentations (i.e. poor separation of objects of interest), and its limitation of being only effective for roundish objects. In the present work, we propose an alternative distance transform method, the random-walk distance transform, and demonstrate its effectiveness in high-throughput segmentation of three microCT datasets of biological tilings (i.e. structures composed of a large number of similar repeating units). In contrast to the Euclidean distance transform, this random-walk approach represents the global, rather than the local, geometric character of the objects to be segmented and, thus, is less susceptible to noise. In addition, it is directly applicable to structures with anisotropic shape characteristics. Using three case studies—stingray tessellated cartilage, starfish dermal endoskeleton, and the prismatic layer of bivalve mollusc shell—we provide a typical workflow for the segmentation of tiled structures, describe core image processing concepts that are underused in biological research, and show that for each study system, large amounts of biologically-relevant data can be rapidly segmented, visualized and analyzed.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 192
    Publication Date: 2022-07-19
    Description: In this paper, we present a software-assisted workflow for the alignment and matching of filamentous structures across a stack of 3D serial image sections. This is achieved by a combination of automatic methods, visual validation, and interactive correction. After an initial alignment, the user can continuously improve the result by interactively correcting landmarks or matches of filaments. This is supported by a quality assessment that visualizes regions that have been already inspected and, thus, allows a trade-off between quality and manual labor. The software tool was developed in collaboration with biologists who investigate microtubule-based spindles during cell division. To quantitatively understand the structural organization of such spindles, a 3D reconstruction of the numerous microtubules is essential. Each spindle is cut into a series of semi-thick physical sections, of which electron tomograms are acquired. The sections then need to be stitched, i.e. non-rigidly aligned; and the microtubules need to be traced in each section and connected across section boundaries. Experiments led to the conclusion that automatic methods for stitching alone provide only an incomplete solution to practical analysis needs. Automatic methods may fail due to large physical distortions, a low signal-to-noise ratio of the images, or other unexpected experimental difficulties. In such situations, semi-automatic validation and correction is required to rescue as much information as possible to derive biologically meaningful results despite of some errors related to data collection. Since the correct stitching is visually not obvious due to the number of microtubules (up to 30k) and their dense spatial arrangement, these are difficult tasks. Furthermore, a naive inspection of each microtubule is too time consuming. In addition, interactive visualization is hampered by the size of the image data (up to 100 GB). Based on the requirements of our collaborators, we present a practical solution for the semi-automatic stitching of serial section image stacks with filamentous structures.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 193
    Publication Date: 2022-07-19
    Description: We describe a novel nonlinear statistical shape model basedon differential coordinates viewed as elements of GL+(3). We adopt an as-invariant-as possible framework comprising a bi-invariant Lie group mean and a tangent principal component analysis based on a unique GL+(3)-left-invariant, O(3)-right-invariant metric. Contrary to earlier work that equips the coordinates with a specifically constructed group structure, our method employs the inherent geometric structure of the group-valued data and therefore features an improved statistical power in identifying shape differences. We demonstrate this in experiments on two anatomical datasets including comparison to the standard Euclidean as well as recent state-of-the-art nonlinear approaches to statistical shape modeling.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 194
    Publication Date: 2023-01-06
    Description: Achieving efficient many-to-many communication on a given network topology is a challenging task when many data streams from different sources have to be scattered concurrently to many destinations with low variance in arrival times. In such scenarios, it is critical to saturate but not to congest the bisectional bandwidth of the network topology in order to achieve a good aggregate throughput. When there are many concurrent point-to-point connections, the communication pattern needs to be dynamically scheduled in a fine-grained manner to avoid network congestion (links, switches), overload in the node’s incoming links, and receive buffer overflow. Motivated by the use case of the Compressed Baryonic Matter experiment (CBM), we study the performance and variance of such communication patterns on a Cray XC40 with different routing schemes and scheduling approaches. We present a distributed Data Flow Scheduler (DFS) that reduces the variance of arrival times from all sources at least 30 times and increases the achieved aggregate bandwidth by up to 50%.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 195
    Publication Date: 2023-01-06
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 196
    Publication Date: 2022-12-05
    Description: General solutions of state machine replication have to ensure that all replicas apply the same commands in the same order, even in the presence of failures. Such strict ordering incurs high synchronization costs caused by distributed consensus or by the use of a leader. This paper presents a protocol for linearizable state machine replication of conflict-free replicated data types (CRDTs) that neither requires consensus nor a leader. By leveraging the properties of state-based CRDTs - in particular the monotonic growth of a join semilattice - synchronization overhead is greatly reduced. In addition, updates just need a single round trip and modify the state `in-place' without the need for a log. Furthermore, the message size overhead for coordination consists of a single counter per message. While reads in the presence of concurrent updates are not wait-free without a coordinator, we show that more than 97% of reads can be handled in one or two round trips under highly concurrent accesses. Our protocol achieves high throughput without auxiliary processes like command log management or leader election. It is well suited for all practical scenarios that need linearizable access on CRDT data on a fine-granular scale.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 197
    Publication Date: 2022-09-22
    Description: The historical importance of ancient manuscripts is unique since they provide information about the heritage of ancient cultures. Often texts are hidden in rolled or folded documents. Due to recent impro- vements in sensitivity and resolution, spectacular disclosures of rolled hidden texts were possible by X-ray tomography. However, revealing text on folded manuscripts is even more challenging. Manual unfolding is often too risky in view of the fragile condition of fragments, as it can lead to the total loss of the document. X-ray tomography allows for virtual unfolding and enables non-destructive access to hid- den texts. We have recently demonstrated the procedure and tested unfolding algorithms on a mockup sample. Here, we present results on unfolding ancient papyrus packages from the papyrus collection of the Musée du Louvre, among them objects folded along approximately orthogonal folding lines. In one of the packages, the first identification of a word was achieved, the Coptic word for “Lord”.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 198
    Publication Date: 2022-09-22
    Description: The historical importance of ancient manuscripts is unique since they provide information about the heritage of ancient cultures. Often texts are hidden in rolled or folded documents. Due to recent impro- vements in sensitivity and resolution, spectacular disclosures of rolled hidden texts were possible by X-ray tomography. However, revealing text on folded manuscripts is even more challenging. Manual unfolding is often too risky in view of the fragile condition of fragments, as it can lead to the total loss of the document. X-ray tomography allows for virtual unfolding and enables non-destructive access to hid- den texts. We have recently demonstrated the procedure and tested unfolding algorithms on a mockup sample. Here, we present results on unfolding ancient papyrus packages from the papyrus collection of the Musée du Louvre, among them objects folded along approximately orthogonal folding lines. In one of the packages, the first identification of a word was achieved, the Coptic word for “Lord”.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 199
    Publication Date: 2022-09-19
    Language: English
    Type: masterthesis , doc-type:masterThesis
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 200
    Publication Date: 2022-10-28
    Description: Die nachhaltige Sicherung und Bereitstellung von Forschungsdaten dienen nicht nur der Reproduzierbarkeit früherer Ergebnisse, sondern in hohem Maße auch der Erzielung künftiger Ergebnisse mit dem Ziel, die Qualität, Produktivität und Wettbewerbsfähigkeit der Wissenschaft zu fördern. Die folgenden Grundsätze gelten als Leitlinien zur Handhabung von Forschungsdaten im ZIB.
    Language: German
    Type: other , doc-type:Other
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...