Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1572-9729
    Keywords: bioremediation ; Dehalococcoides ; dechlorination ; microcosm ; tetrachloroethane ; trichloroethene
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract This study investigated the biotransformation pathways of 1,1,2,2-tetrachloroethane (1,1,2,2-TeCA) in the presence of chloroethenes (i.e. tetrachloroethene, PCE; trichloroethene, TCE) in anaerobic microcosms constructed with subsurface soil and groundwater from a contaminated site. When amended with yeast extract, lactate, butyrate, or H2 and acetate, 1,1,2,2-TeCA was initially dechlorinated via both hydrogenolysis to 1,1,2-trichloroethane (1,1,2-TCA) (major pathway) and dichloroelimination to dichloroethenes (DCEs) (minor pathway), with both reactions occurring under sulfidogenic conditions. In the presence of only H2, the hydrogenolysis of 1,1,2,2-TeCA to 1,1,2-TCA apparently required the presence of acetate to occur. Once formed, 1,1,2-TCA was degraded predominantly via dichloroelimination to vinyl chloride (VC). Ultimately, chloroethanes were converted to chloroethenes (mainly VC and DCEs) which persisted in the microcosms for very long periods along with PCE and TCE originally present in the groundwater. Hydrogenolysis of chloroethenes occurred only after highly reducing methanogenic conditions were established. However, substantial conversion to ethene (ETH) was observed only in microcosms amended with yeast extract (200 mg/l), suggesting that groundwater lacked some nutritional factors which were likely provided to dechlorinating microorganisms by this complex organic substrate. Bioaugmentation with an H2-utilizing PCE-dechlorinating Dehalococcoides spp. -containing culture resulted in the conversion of 1,1,2,2-TeCA, PCE and TCE to ETH and VC. No chloroethanes accumulated during degradation suggesting that 1,1,2,2-TeCA was degraded through initial dichloroelimination into DCEs and then typical hydrogenolysis into ETH and VC.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1572-9729
    Keywords: biodegradation ; Burkholderia ; fenitrothion ; mpd gene
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A short rod shaped, gram-negative bacterium strain Burkholderia sp. FDS-1 was isolated from the sludge of the wastewater treating system of an organophosphorus pesticides manufacturer. The isolate was capable of using fenitrothion as the sole carbon source for its growth. FDS-1 first hydrolyzed fenitrothion to 3-methyl-4-nitrophenol, which was further metabolized to nitrite and methylhydroquinone. The addition of other carbon source and omitting phosphorus source had little effect on the hydrolysis of fenitrothion. The gene encoding the organophosphorus hydrolytic enzyme was cloned and sequenced. The sequence was similar to mpd, a gene previously shown to encode a parathion-methyl-hydrolyzing enzyme in Plesiomonas sp. M6. The inoculation of strain FDS-1 (106 cells g−1) to soil treated with 100 mg fenitrothion emulsion kg−1 resulted in a higher degradation rate than in noninoculated soils regardless of the soil sterilized or nonsterilized. These results highlight the potential of this bacterium to be used in the cleanup of contaminated pesticide waste in the environment.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Biodegradation 17 (2006), S. 207-217 
    ISSN: 1572-9729
    Keywords: biodegradation ; DGGE ; K2Ni(CN)4 soil bacterial populations
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Metal cyanides are significant contaminants of many soils found at the site of former industrial activity. In this study we isolated bacteria capable of degrading ferric ferrocyanide and K2Ni(CN)4. One of these bacteria a Rhodococcus spp. was subsequently used to bioaugment a minimal medium broth, spiked with K2Ni(CN)4, containing 1 g of either an uncontaminated topsoil or a former coke works site soil. Degradation of the K2Ni(CN)4 was observed in both soils, however, bioaugmentation did not significantly impact the rate or degree of K2Ni(CN)4 removal. Statistical analysis of denaturing gradient gel electrophoresis profiles showed that the topsoil bacterial community had a higher biodiversity, and its structure was not significantly affected by either K2Ni(CN)4 or bioaugmentation. In contrast, profiles from the coke works site indicated significant changes in the bacterial community in response to these additions. Moreover, in both soils although bioaugmentation did not affect rates of biodegradation the Rhodococcus spp. did become established in the communities in broths containing both top and coke works soil. We conclude that bacterial communities from contaminated soils with low biodiversity are much more readily perturbed through interventions such as contamination events or bioaugmentation treatments and discuss the implications of these findings for bioremediation studies.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1572-9729
    Keywords: bioremediation ; composting ; ecotoxicity ; oil sludge
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The present work attempts to ascertain the efficacy of low cost technology (in our case, composting) as a bioremediation technique for reducing the hydrocarbon content of oil refinery sludge with a large total hydrocarbon content (250–300 g kg−1), in semiarid conditions. The oil sludge was produced in a refinery sited in SE Spain The composting system designed, which involved open air piles turned periodically over a period of 3 months, proved to be inexpensive and reliable. The influence on hydrocarbon biodegradation of adding a bulking agent (wood shavings) and inoculation of the composting piles with pig slurry (a liquid organic fertiliser which adds nutrients and microbial biomass to the pile) was also studied. The most difficult part during the composting process was maintaining a suitable level of humidity in the piles. The most effective treatment was the one in which the bulking agent was added, where the initial hydrocarbon content was reduced by 60% in 3 months, compared with the 32% reduction achieved without the bulking agent. The introduction of the organic fertiliser did not significantly improve the degree of hydrocarbon degradation (56% hydrocarbon degraded). The composting process undoubtedly led to the biodegradation of toxic compounds, as was demonstrated by ecotoxicity tests using luminescent bacteria and tests on plants in Petri dishes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...