Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Physics  (10,646)
  • Engineering General  (9,884)
  • 101
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2623-2634 
    ISSN: 0887-6266
    Keywords: interface ; surface tension ; rheological ; morphology ; polymethylmethacrylate ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Impact modifiers with grafted PMMA shell are used to modify polymethylmethacrylate matrix. The composition of the shell is chosen to enhance the interactions at the modifier/matrix interface and to obtain good dispersion of the impact modifier in order to optimize impact strength of the blend. The degree of interactions at the interface is characterized by the interfacial region where the chains of the matrix mix with those of the shell of the modifier. The deviation of the measured viscoelastic behavior of these blends from that predicted by the emulsion models has been attributed to the formation of the network structure due to the association of matrix chains with the shell of the modifier. It is expected that the network structure will decrease with increasing frequency and, as such, the effective volume of the particle is frequency dependent. This study uses the emulsion models to estimate the larger effective volume of the particle and, therefore, the extent of interaction at the interface. In the blends of this study it can be shown that at low modifier levels the solvent swelling of the modifier shell results in stronger interactions with the matrix; this effect is negated by the aggregation of particles at higher modifier loadings. The interaction of core modifier with the PMMA matrix seems to be similar to that of the core-shell modifier. This would not be expected from the calculated interfacial thickness of approximately 4 nm. It is, therefore, proposed that during melt-processing the core modifier surface was altered due to grafting of the matrix PMMA chains during melt-blending to (BA/St) copolymer of the core modifier thus reducing the interfacial tension. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2623-2634, 1998
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 102
    ISSN: 0887-6266
    Keywords: optically active polymers ; gel permeation chromatography ; laser light scattering ; GPC calibration ; rodlike conformation ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: By combining the offline static and dynamic laser light scattering (LLS) and gel permeation chromatography (GPC) results of a broadly distributed polymer sample, we were able to characterize a series of chiral binaphthyl-based polyarylenes and poly(aryleneethnylene)s in THF at 25°C. For each of the samples, we obtained not only the weight-average molar mass Mw, the second virial coefficient A2 and the z-average translational diffusion coefficient 〈D〉, but also two calibrations: V = A + Blog(M) and D = kD M-αD, where V, D, and M are the elution volume, the translational diffusion coefficient and the molar mass for monodisperse polymer chains, respectively, and A, B, kD, and αD are four calibration constants. Using these calibrations, we estimated the molar mass distributions of these novel polymers. We showed that using polystyrene to calibrate the GPC columns could lead to a smaller Mw. Our results indicate that all the polymers studied have a rigid chain conformation in THF at 25°C and the introduction of the  - NO2 groups into the monomer can greatly promote the polymer solubility in THF.© 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2615-2622, 1998
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 103
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2643-2651 
    ISSN: 0887-6266
    Keywords: poly(ethylene oxide) ; poly(methyl methacrylate) ; blends ; atomic-force microscopy ; crystallization ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The binary blend of poly(ethylene oxide)/atactic poly(methyl methacrylate) is examined using hot-stage atomic-force microscopy (AFM) in conjunction with differential scanning calorimetry and optical microscopy. It was found possible to follow in real time the melting process, which reveals itself to be nonuniform. This effect is ascribed to the presence of lamellae having different thicknesses. The crystallization process of poly(ethylene oxide) from the miscible melt is also followed in real time by AFM, affording detailed images of the impingement of adjacent spherulites and direct observation of lamellar growth and subsequent polymer solidification in the interlamellar space.© 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2643-2651, 1998
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 104
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2635-2642 
    ISSN: 0887-6266
    Keywords: polypyrrole film ; bending ; strain ; sorption isotherm ; diffusion ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The sorption-induced bending and recovery motion of PPy films containing different dopant ions have been investigated, and the interaction between water vapor and PPy was studied from sorption isotherms and kinetics. It was found that the PPy/BF4 film exhibited the most rapid motion, and the initial speeds of bending and recovery motion were 7.9 and 5.9 mm s-1, respectively. The linear expansion coefficient of the film increased in order of PPy/DBS, PPy/TsO, PPy/ClO4, and PPy/BF4, which is consistent with the packing density of the PPy chains (φPPy). The dual-mode sorption model applied to the isothermal sorption of water vapor to the PPy demonstrated that the Langmuir's capacity constant increased in the same order with the φPPy, while the Henry's law constant was nearly constant. The sorption kinetics obeyed Fickian despite the dimensional change of the films, and the PPy/BF4 film had the largest diffusion coefficient of 3.13 × 10-8 cm2 s-1. The experimental results indicated that the kind of dopant ion was crucial to the thermodynamics and kinetics of sorption, and the quick and intensive bending motion of PPy/BF4 films was attributed to the fast diffusion of water vapor, which caused the large dimensional change of the film.© 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2635-2642, 1998
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 105
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2665-2669 
    ISSN: 0887-6266
    Keywords: dielectric permeability ; dipole correlation factor ; glass transformation ; correlation ; polarization ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The generality of baric changes in static dielectric permeability of polymers for different temperatures of the sample is considered in the present work. It is shown that the initial growth of dielectric permeability is followed by its lowering that arises during the glass transformation of the sample. Formulas that reflect the changes of dielectric permeability under isothermal changes of pressure and isobaric changes of temperature of the sample are obtained. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2665-2669, 1998
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 106
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2653-2663 
    ISSN: 0887-6266
    Keywords: [60]fullerene ; styrene ; anionic copolymerization ; structural characterization ; sodium naphthalene ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The novel C60-styrene copolymers with different C60 contents were prepared in sodium naphthalene-initiated anionic polymerization reactions. Like the pure polystyrene, these copolymers exhibited the high solvency in many common organic solvents, even for the copolymer with high C60 content. In the polymerization process of C60 with styrene an important side reaction, i.e., reaction of C60 with sodium naphthalene, would occur simultaneously, whereas crosslinking reaction may be negligible. 13C-NMR results provided an evidence that C60 was incorporated covalently into the polystyrene backbone. In contrast to pure polystyrene, the TGA spectrum of copolymer containing ∼ 13% of C60 shows two plateaus. The polystyrene chain segment in copolymer decomposed first at 300-400°C. Then the fullerene units reptured from the corresponding polystyrene fragments attached directly to the C60 cores at 500-638°C. XRD evidence indicates that the degree of order of polymers increases with the fullerene content increased in terms of crystallography. Incorporation of C60 into polystyrene results in the formation of new crystal gratings or crystallization phases. In addition, it was also found that [60]fullerene and its polyanion salts [C60n-(M+)n, M = Li, Na] cannot be used to initiate the anionic polymerization of some monomers such as acrylonitrile and styrene, etc.© 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2653-2663, 1998
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 107
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2671-2675 
    ISSN: 0887-6266
    Keywords: second normal stress difference ; melt rheology ; Doi-Edwards model ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Flow birefringence is used to study stress relaxation following step strain deformations of a well entangled polyisoprene melt. The optical method employs multiple light paths to fully sample the three-dimensional stress tensor, and hence provides measurements of all three independent shear material functions (shear stress and both first and second normal stress differences). Experiments are complicated by multiple orders in retardation. However, data show that the ratio of the second to the first normal stress difference is a strain thinning function, with magnitude intermediate between the predictions of the Doi-Edwards model with and without independent alignment. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2671-2675, 1998
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 108
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2677-2681 
    ISSN: 0887-6266
    Keywords: sulfonated SEBS ; viscosity property ; molecular aggregation ; freezing-thawing treatment ; shear-thickening ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The dilute solution properties of lightly sulfonated hydrogenated styrene-butadiene-styrene block copolymer (S-SEBS) dissolved in tetrahydrofunan (THF) were studied by viscometry. The ring conformation in dilute regime can be deduced from the intrinsic viscosity data. It is believed that this special conformation results from the location of ionic group at both two-end blocks. The intermolecular aggregation can be observed when the solutions undergo the freezing-thawing process in the same concentration region. The extent of aggregation is affected by the freezing-thawing cycle times, water content in THF, and the counterion radii, etc. The properties of the aggregation equilibrium are also discussed. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2677-2681, 1998
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 109
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2683-2689 
    ISSN: 0887-6266
    Keywords: interfacial tension ; square gradient theory ; equation-of-state theory ; polystyrene/poly(methyl methacrylate) blend ; polystyrene/poly(dimethyl siloxane) blend ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Interfacial tension between immiscible polymer pairs was predicted by using a square gradient theory in conjunction with the Flory-Orwoll-Vrij equation-of-state expression for the free energy of mixing. The contact interaction parameter was determined by fitting the equation-of-state theory to experimental cloud points taken from the literature, and the square gradient coefficient was estimated from the relation derived from a scattering function. The modified square gradient theory could successfully predict both the magnitude and temperature dependence of interfacial tension between polystyrene and poly(methyl methacrylate), although no adjustable parameters were used in calculating interfacial tension. The molecular weight dependence of interfacial tension was also successfully predicted. The contribution of free volume on interfacial tension is analyzed for two systems: polystyrene/poly(methyl methacrylate) and polystyrene/poly(dimethyl siloxane) blends. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2683-2689, 1998
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 110
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2691-2702 
    ISSN: 0887-6266
    Keywords: surface segregation ; polyolefin copolymers ; deuterium labeling effect ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: We have examined the effect of deuterium labeling on surface interactions in mixtures of random olefinic copolymers [C4H8]1-x[C2H3(C2H5)]x. Based on surface segregation data we have determined a surface energy difference χs between pure blend constituents. In each binary mixture components have different fractions x1, x2 of the group C2H3(C2H5), and one component is labeled by deuterium (dx) while the other is hydrogenous (hx). The mixtures are grouped in four pairs of structurally identical blends with swapped labeled constituent (dx1/hx2, hx1/dx2). For each pair the surface energy parameter χs increases when the component with higher fraction x is deuterated, i.e., χs(dx1/hx2) 〉 χs(hx1/dx2) for x1 〉 x2. A similar pattern has been found previously for the bulk interaction parameter χ. This is explained by the solubility parameter formalism aided by the lattice theory relating the surface excess to missing-neighbor effect. χs has also an additional contribution, insensitive to deuterium swapping effect, and related to entropically driven surface enrichment in a more stiff blend component with a lower fraction x. Both enthalpic and entropic contributions to χs seem to depend on the extent of chemical mismatch between blend components. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2691-2702, 1998
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 111
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2703-2716 
    ISSN: 0887-6266
    Keywords: calorimetry ; dielectrics ; diffusion ; monoamine-triepoxide ; thermoset ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Calorimetry and dielectric relaxation spectroscopy during the growth of a polymer network in the stoichiometric mixture of a triepoxide with 4-chloroaniline have been performed in separate experiments to investigate the increase in the relaxation time with the number of covalent bonds. A comparison with the corresponding study of triepoxide-aniline and triepoxide-3-chloroaniline mixtures shows that steric hindrance of the amine group by chlorine slows the molecular dynamics and the relaxation time of the state containing a fixed number of bonds. The polymerization kinetics measured during ramp heating does not yield a reliable activation energy. A recent empirical relation between the relaxation time and the extent of polymerization, and the condition for the onset of diffusion-control kinetics have been examined using the data for these three polymerizing mixtures. The results show substantial deviations from the empirical relation and appear to conflict with our basic understanding of the polymerization process. It is shown mathematically that features attributed to the onset of diffusion-controlled kinetics can arise from thermochemical behavior alone, without reference to the molecular dynamics. An earlier theory for the change in the kinetics of an addition reaction from mass control to diffusion control has been considered, and is seen as relevant to the polymerization reactions. It is argued that the dielectric relaxation rate does not directly indicate the chemical reaction rate because the reorientational motion of the dipolar entities may not be coupled to the rotational and translational diffusion that brings the sterically hindered chemically reacting sites together. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2703-2716, 1998
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 112
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2737-2743 
    ISSN: 0887-6266
    Keywords: high-temperature zone-drawing ; high-tension multiannealing ; nylon 46 fiber ; high-modulus ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Nylon 46 fibers produced by the high-temperature zone-drawing treatment were treated by repeating high-tension annealing treatments, that is, a high-tension multiannealing (HTMA) treatment to improve their tensile properties. The HTMA treatment was carried out at a repetition time of 10 times and treating temperature of 110°C under high tension (538.2 MPa) close to the tensile strength at break. Although the HTMA treatment was carried out at 110°C, which is much lower than the crystallization temperature of 265°C for nylon 46, the degree of crystallinity increased up to 59%. The orientation factor of crystallites increased dramatically up to 0.949 by the first high-temperature zone-drawing treatment and slightly during the subsequent treatments. This observation indicated that the orientation of crystallites due to slippage among molecular chains did not occur during the HTMA treatment. The treatments shifted the melting peak to slightly higher temperatures, and the HTMA fiber has a melting endotherm peaking at 285°C. The fiber obtained finally had a storage modulus of 12.5 GPa at 25°C. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2737-2743, 1998
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 113
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2745-2750 
    ISSN: 0887-6266
    Keywords: polymer blends ; hydrogen bonding ; small-angle neutron scattering ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Deuterium-labeled polystyrene modified by random distributions of the comonomer p-(1,1,1,3,3,3-hexaflouro-2-hydroxyisopropyl)-α-methyl-styrene [DPS(OH)] has been blended with poly(butyl methacrylate) (PBMA) and studied with small-angle neutron scattering (SANS). Miscibility is induced via hydrogen bonding between the DPS(OH) hydroxyl group and PBMA carbonyl groups. The data suggest that the nature of the miscible-phase structure in these blends differs from that of the usual homopolymer blends at small scattering angles, which we attribute to the short-range site specific nature of the hydrogen bond interaction. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2745-2750, 1998
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 114
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2725-2735 
    ISSN: 0887-6266
    Keywords: blending ; polymorphism ; syndiotactic polystyrene (s-PS) ; amorphous polystyrene (a-PS) ; PPO ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: X-ray diffraction and optical microscopy characterization were performed to evaluate the phenomenon of alteration of polymorphism of syndiotactic polystyrene (s-PS) in the presence of other blending miscible polymers: poly(2,6-dimethyl-p-phenylene oxide) (PPO) or atactic polystyrene (a-PS). Both α and β crystal forms were observed in the neat s-PS sample, but only β-form crystal was found in miscible blends of s-PS with a-PS or PPO. The order and neighboring chain segments of neat s-PS are different from those of s-PS/PPO or s-PS/a-PS blends; thus, it is plausible that the greater randomness in the melt state of s-PS/a-PS or s-PS/PPO blends might be unfavorable for formation of α-form crystals from melts. The final spherulitic morphology the s-PS/a-PS or s-PS/PPO blends suggests that the amorphous-state miscibility of does not change much the spherulitic structure of s-PS. The radial growth rate is, in general, depressed with the presence of blending miscible polymers in s-PS of equal Tg or PPO of higher Tg. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2725-2735, 1998
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 115
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2751-2760 
    ISSN: 0887-6266
    Keywords: fatigue ; crazes ; polypropylene ; microscopy ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: This article reports initial results of an investigation whose aim is to characterize fatigue damage induced in semicrystalline polymers subjected to uniaxial high cycle fatigue. Herein we report results obtained from fatiguing tensile bars of high molecular weight compression-molded alpha-phase iPP. Samples were fatigued for up to one million cycles at a frequency of 2 Hz. During fatigue, in situ measurements of dynamic mechanical response and energy densities were recorded. Postmortem morphological studies were also conducted using SEM of etched surfaces and TOM. The results show that damage formation occurs in a regularly spaced array of crazes. This damage, its evolution, and energetics are discussed as they relate to the overall fatigue life of the material. A methodology to isolate the energy consumption for the formation of a single craze is given. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2751-2760, 1998
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 116
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 999-1004 
    ISSN: 0887-6266
    Keywords: latex ; polystyrene ; luminescence ; particle ; micron-diameter ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: A technique for rapid determination of the presence of polystyrene in individual micron-diameter polymer particles of mixed composition is presented. This technique is based upon observation of visible emission from conjugated regions of the polymer backbone, generated photochemically, while the particle is held in an optical trap. Particle emission characteristics are dependent upon particle size and suspending solvent. Emission spectra are provided for single component polystyrene particles and mixed polymer particles containing poly(methyl methacrylate), poly(N-vinyl pyrrolidone), and polystyrene. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 999-1004, 1998
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 117
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1005-1012 
    ISSN: 0887-6266
    Keywords: polylactide ; melt spinning ; fiber formation ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Poly(L-lactic acid) filaments were prepared by high speed melt spinning at take-up velocities up to 5000 m/min. The crystallinity, birefringence, tensile strength, Young's modulus and yield strength all exhibit maxima at take-up velocities between 2000 and 3000 m/min. The boiling water shrinkage exhibits a minimum in this range. The maximum tensile strength of the as-spun filaments was 385 MPa and the maximum modulus was 6 GPa. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1005-1012, 1998
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 118
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 415-423 
    ISSN: 0887-6266
    Keywords: block copolymer ; polymeric micelle ; nanoparticle ; clonazepam ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Block copolymers consisting of poly(γ-benzyl L-glutamate) (PBLG) as the hydrophobic part and poly(ethylene oxide) (PEO) as the hydrophilic part were synthesized and characterized. Core shell type nanoparticles of the block copolymers (abbreviated GEG) were prepared by the dialysis method. Under fluorescence spectroscopy measurement, the GEG block copolymers were associated in water to form core shell type nanoparticles as polymeric micelles and the critical micelle concentrations (CMC) values of the block copolymers decreased with increasing PBLG chain length in the block copolymers. Transmission electron microscopy (TEM) observations revealed nanoparticles of spherical shapes. From dynamic light scattering (DLS) study, sizes of nanoparticles of GEG-1 and GEG-2 copolymer were 64.3 ± 28.7 nm and 28.9 ± 7.0 nm. The drug-loading contents of GEG-1 and GEG-2 nanoparticles were 15.2 and 8.3 wt %, respectively. These results indicated that the drug-loading contents were dependent on PBLG chain length in the copolymer. Then, the longer the PBLG chain length, the more the drug-loading contents. Release of clonazepam (CNZ) from the nanoparticles was slower in higher loading contents of CNZ than lower loading contents due to the hydrophobic interaction between PBLG core and CNZ. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 415-423, 1998
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 119
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 403-414 
    ISSN: 0887-6266
    Keywords: P(VDF/TrFE) copolymer ; phase transition ; ferroelectric ; crystallization ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: A systematic study was carried out on the effect of the crystallization temperature (Tcr), on the phase transitions presented by P(VDF/TrFE) copolymers cast from dimethylformamide (DMF) solution with molar ratios 60/40, 70/30, and 80/20. The results obtained by differential scanning calorimetry (DSC) showed that two-phase transitions are observed only when the copolymer crystallizes above a certain temperature To, and that the temperatures at which these transitions occur are reduced slightly with Tcr increase. It also was observed that when Tcr increases, the intensity of the endotherm corresponding to the lowest temperature transition is increased, whereas the one corresponding to the highest temperature transition is reduced. In order to explain these phenomena, the existence of two ferroelectric and two paraelectric phases is suggested. The conformational differences between like phases occur due to the distinct origin of each one: the best organized phase crystallizes directly from solution, whereas the least organized is the result of a solid phase transition. Wide angle x-ray diffusion (WAXD) diffractograms corroborate this hypothesis. Phase diagrams for samples crystallized below and above To have been proposed. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 403-414, 1998
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 120
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 763-781 
    ISSN: 0887-6266
    Keywords: random copolyesters ; copolymers ; crystallization ; melting ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The melting behavior of poly(ethylene terephthalate co-1,4-cyclohexylene dimethylene terephthalate) [PET/CT] random copolyesters has been studied. The basis of this analysis was the triple melting behavior of PET homopolymers, which is commonly observed after a period of isothermal crystallization followed by linear heating in a differential scanning calorimeter. Both ET and CT homopolymers are able to crystallize, and as a consequence, the copolymer morphology depends on the ET/CT ratio. It has been reported that at low CT concentrations, the ET units can crystallize with complete rejection of the CT units and that at high CT concentrations, the CT units can cocrystallize with the ET units. In the present work, low CT concentrations were selected, as they are completely rejected from the ET crystals. The purpose was to further test the hypothesis that in the triple melting behavior of PET homopolymers, the second DSC melting endotherm is related to secondary species crystallized by material rejected from the primary crystals. This concept arose from our previous work, where it was speculated that increasing the average molecular-weight of PET would enhance molecular entanglement and increase secondary crystallization. This process would give rise to a higher amount of species being rejected from the main crystals, i.e., an increase of secondary crystallization would occur, and as a consequence the second melting endotherm would be enhanced. Similar to the effect of molecular weight, such behavior has been observed as a function of rejected copolymer content. This gives support to our previously proposed step-like crystallization and melting mechanism for PET homopolymers, and has the potential to be extended to other high temperature semicrystalline polymeric systems. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 763-781, 1998
    Additional Material: 26 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 121
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 783-788 
    ISSN: 0887-6266
    Keywords: poly(ethylene terephthalate) ; sub-Tg ; annealing ; conformation ; infrared spectra ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Using FTIR spectroscopy we have examined conformational changes in the quenched and slowly cooled amorphous PET films during physical aging process. It was observed that the amount of trans conformers for quenched sample decreased upon sub-Tg annealing. For the slowly cooled sample that corresponds to a state closer to equilibrium, the amount of trans conformers hardly decreased, but increased gradually during sub-Tg annealing process. The conformational populations of these two samples tend to be identical with annealing time. These results demonstrate that sub-Tg annealing will lead to closer interchain packing and result in the formation of new cohesional entanglements along the chains. In situ FTIR studies on the conformational changes of these samples were also carried out during heating up of the sample through the glass transition region. The results showed that incremental changes of the amount of trans conformers in Samples Q and SC were gradual, while an abrupt change of trans conformers occurred in the sub-Tg annealed samples. These results were in agreement with the formation of the interchain cohesional entanglement due to sub-Tg annealing. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 783-788, 1998
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 122
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 789-795 
    ISSN: 0887-6266
    Keywords: in situ polymerization ; nanocomposite ; toughness ; nylon 6 ; silica ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: A novel method, in situ polymerization, was used for the preparation of nylon 6/silica nanocomposites, and the mechanical properties of the nanocomposites were examined. The results showed that the tensile strength, elongation at break, and impact strength of silica-modified nanocomposites exhibited a tendency of up and down with the silica content increasing, while those of silica-unmodified nanocomposites decreased gradually. It also exhibited that the mechanical properties of silica-modified nanocomposites have maximum values only when 5% silica particles were filled. Based on the relationship between impact strength of the nanocomposites and the matrix ligament thickness τ, a new criterion was proposed to explain the unique mechanical properties of nylon 6/silica nanocomposites. The nylon 6/silica nanocomposites can be toughened only when the matrix ligament thickness is less than τc and greater than τa, where τa is the matrix ligament thickness when silica particles begin to aggregate, and τc is the critical matrix ligament thickness when silica particles begin to toughen the nylon 6 matrix. The matrix ligament thickness, τ, is not independent, which related with the volume fraction of the inorganic component because the diameter of inorganic particles remains constant during processing. According to the observation of Electron Scanning Microscope (SEM), the process of dispersion to aggregation of silica particles in the nylon 6 matrix with increasing of the silica content was observed, and this result strongly supported our proposal. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 789-795, 1998
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 123
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 797-803 
    ISSN: 0887-6266
    Keywords: polynorbornene ; gas separation ; membrane ; free volume ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: A study of gas transport properties of novel polynorbornenes with increasing length of an aliphatic pendant group R (CH3—, CH3(CH2)3—, CH3(CH2)5—, CH3(CH2)9—) has been performed. These polymers were synthesized using novel organometallic complex catalysts via an addition polymerization route. This reaction route maintained the bridged norbornene ring structure in the final polymer backbone. Gas permeability and glass transition temperature were found to be higher than those for polynorbornenes prepared by ring-opening metathesis and reported in the literature. It was shown that for noncondensable gases such as H2 and He the selectivity over N2 decreased when the length of the pendant group increased, but remained relatively stable for the more condensable gases (O2 and CO2). The permeability coefficient is correlated well to the inverse of the fractional free volume of the polymers. The more condensable gases showed a deviation from this correlation for the longest pendant group, probably due to an increase of the solubility effect. This polymer series demonstrated a simultaneous increase in permeability and selectivity, uncommon for polymers. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 797-803, 1998
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 124
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 815-825 
    ISSN: 0887-6266
    Keywords: dielectric spectroscopy ; interfacial tension ; liquid crystalline polymer ; blend ; interfacial polarization ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Dielectric spectroscopy is an unexplored technique in the elucidation of the morphology of polymer blends. Especially the appearance of interfacial polarization can reveal important information about the microstructure of a polymer blend. A model system of liquid crystalline polymer fibers lined up in a thermoplastic matrix was investigated. After heating above the melting temperature of both phases, the fibers developed distortions which grew with time. Dielectric spectroscopy was used to follow the change in shape of the distorted fibers. The use of only two frequencies made it possible to increase the number of relevant data points in the initial stages of the fiber breakup process. From these measurements it was possible to calculate the growth rate and hence the interfacial tension between the two polymers. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 815-825, 1998
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 125
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 805-813 
    ISSN: 0887-6266
    Keywords: collagen ; surfactants ; calorimetry ; segment-long-spacing ; anionic ; titration ; sodium lauryl sulfate ; castor oil ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Leather, a textile based on collagen, usually requires the addition of sulfated oils that have been recently found to cause instability when heated in critical manufacturing processes. Here reactions between collagen and sodium dodecyl sulfate (SDS), sulfated castor oil, or a synthetic sulfated oil are studied calorimetrically. Sodium lauryl sulfate below its critical micelle concentration (cmc) displayed an immediate exotherm due to equilibrium binding of the reagents with stoichiometry n = 12.6 ± 0.2, K = (2.02 ± 0.8) × 107 M-1, and enthalpy ΔH = 62 ± 2 Kcal/mol; and a delayed endotherm due to denaturation of collagen. The endotherms accompanying the reactions with sulfated oils with longer chains were smaller, with no apparent denaturation of collagen. The micellar nature of these surfactants was apparent from very large n for sulfated castor oil, 4082 ± 11 and a very small value of ΔH, 0.77 ± 0.01 cal/mol. The binding of sulfated castor oil at the polar bands of collagen crystallites, comprising extended molecules arranged side-by-side, was shown directly by electron microscopy. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 805-813, 1998
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 126
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1283-1291 
    ISSN: 0887-6266
    Keywords: cutting ; elastomer ; viscoelastic behavior ; crack tip diameter ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The cutting behavior of elastomers by a sharp object was investigated using various elastomers such as acrylonitrile-butadiene rubber (NBR), styrene-butadiene rubber (SBR), and natural rubber (NR). The effects of crosslinking density, cutting rate, and temperature on the cutting energy of elastomers were investigated. The cutting behavior of swollen elastomers was also investigated. It was found that the cutting energy increased as the molecular weight between crosslinks increased. It was also found that the cutting energies of various elastomers did not yield a single line. Moreover, even in the threshold condition of cutting process, the cutting energy was much higher than the threshold fracture energy. These results suggest that the cutting behavior cannot be explained by only a C—C bond rupture process, but it includes other energy dissipation processes. The curves for cutting energies obtained at different cutting rates and temperatures were well superimposed on a single master curve when they were shifted using the WLF (Williams, Landel, and Ferry) equation. Therefore, it is supposed that the cutting of elastomers by a sharp object includes viscoelastic energy dissipation process and is the viscoelastic behavior. It was also found that the variation of cutting energy over a considerable range of effective rates was smaller than that of the tear energy. It is attributed to the fact that the change of the crack tip diameter, i.e., roughening or reduction, was restricted by the diameter of razor blade. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1283-1291, 1998
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 127
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2165-2175 
    ISSN: 0887-6266
    Keywords: temperature-modulated differential scanning calorimetry ; DSC ; heat capacity ; glass transition ; thermal relaxation ; polystyrene ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The glass transition can be measured at different experimental conditions. Using spectroscopic methods at relative high frequency the α-relaxation is measured in the thermodynamic equilibrium. In the caloric case we call this phenomenon thermal relaxation transition (TRT). With a conventional differential scanning calorimeter (DSC) the transition of the equilibrium (the melt) into a nonequilibrium (the glassy state) is measured. This effect is called thermal glass transition (TGT). In contrast to the TGT, the TRT can be described using the linear response approach. The temperature-modulated differential scanning calorimetry (TMDSC) technique superimposes a periodical temperature perturbation upon the constant scanning rate of conventional DSC. This technique combines a spectroscopic method with a linear temperature scan. Both the TGT and the TRT are measured simultaneous. Because the frequencies are relatively low in a TMDSC experiment, the temperature ranges of both transitions overlap. In this case, the experimental results show an influence of the TGT on the TRT. The reason of that is the deviation from the nonequilibrium. In this case, the fictive temperature is different from the external temperature. This effect can be described by means of a Tool-Narayanaswamy-Moynihan model for the TGT. Based on this model, a description of the complex heat capacity close to the thermal glass transition is shown. The influence of the beginning freezing-in process on the thermal relaxation is characterized by the fictive temperature. Using the presented description, a quantitative calculation of the nonlinear effects in the thermal relaxation is possible. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2165-2175, 1998
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 128
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2177-2189 
    ISSN: 0887-6266
    Keywords: yield ; polyethylene ; stem length ; crystal plasticity ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The yield stress behavior of a range of polyethylene materials which differ with respect to their short chain branch content has been studied. Measurements carried out over a wide range of temperatures have shown that there is a sudden transition in the behavior of the yield stress at a temperature which is dependent on both the grade of material and the applied strain rate. These results are in agreement with previous results found from analysis of the yield strain behavior.Above the transition temperature the materials all behave in a nonlinear viscoelastic manner, and the yield process is considered as being propagation controlled. Below the transition temperature the materials all behave in an elastic-plastic manner, and the yield process is considered as being nucleation controlled. Below the transition temperature the temperature dependence of the yield stress is determined by the thickness of the crystalline lamellae. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2177-2189, 1998
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 129
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2191-2196 
    ISSN: 0887-6266
    Keywords: polymer blends ; coalescence ; Ostwald ripening ; scaling law ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Particle coarsening was investigated in polymer blends containing a minor phase volume of 23% produced by compositional quenching. The scaling exponents for three binary blends (polystyrene/polybutadiene, polystyrene/polyisoprene, and polystyrene/S-B random copolymer) were in reasonable agreement with the expected value of 0.33. The scaling exponent for a ternary blend containing an amphiphile (polystyrene/polybutadiene/S-B block copolymer) was substantially lower at 0.14. The particle size distributions for all the blends were broader than the self-similar distribution expected for Ostwald ripening and became increasingly broad with time. These distributions fit a two parameter coalescence model in which the probability of coalescence is proportional to the particle diameter. However, Ostwald ripening appears to make some contribution, particularly at early times. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2191-2196, 1998
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 130
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2211-2224 
    ISSN: 0887-6266
    Keywords: starch ; mechanical properties ; percolation ; clustering ; diffusion ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The use of starch microcrystals as biodegradable particulate filler is evaluated by processing composite materials with a weight fraction of starch ranging from 0 to 60%. In a previous work [Macromolecules, 29, 7624] the preparation technique of a colloidal suspension of hydrolyzed starch and the processing of composite materials by freeze drying and molding a mixture of aqueous suspensions of starch microcrystals and synthetic polymer matrix were presented. Starch microcrystals with dimensions of a few nanometers were obtained from potatoes' starch granules, and it was found that this filler produces a great reinforcing effect, especially at a temperature higher than Tg of the synthetic matrix. Classical models for polymers containing nearly spherical particles based on a mean field approach could not explain this reinforcing effect. The morphology of these nanocomposite systems is discussed in light of aggregate formation and percolation concepts. The sorption behavior of these materials is also performed. Starch is a hygroscopic material, and it is found that the composites absorb more water, as the starch content is higher. The diffusion coefficient of the penetrant is predicted from modified mechanical three branch series-parallel model based on a percolation approach. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2211-2224, 1998
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 131
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 655-664 
    ISSN: 0887-6266
    Keywords: PMMA ; ion beam ; scission ; G value ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Chemical and physical effects induced by bombardment of nearly monodisperse Poly(methyl methacrylate) (PMMA) with energetic ions (He+) at 200 keV have been studied. Bond scission is the main results of low fluence ion irradiation but, at high fluence there is a regime transition of PMMA from positive tone resist behavior to negative tone. The ion-induced chemical reactions in the macromolecular film give rise to gas evolution and chemical changes in the solid residue. The gas formed during the bombardment has been studied by means of a mass spectrometer, while the solid polymer has been characterized by measuring the molecular weight distribution (MWD) and the absorption coefficient in the Near Infrared (NIR), visible, and ultraviolet regions. X-ray Photoelectron Spectroscopy (XPS) has been performed to learn what happens at the surface of the polymer after bombardment. The main result of these studies is that at fluence higher than 1013 cm-2 both chemical and physical effects follow a nonlinear behavior due to the transition from a single-track regime to a track overlap regime. This transition is explained in terms of progressive chemical change of the irradiated polymer from the pristine chemical structure to a new one depleted of the ester pendent groups. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 655-664, 1998
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 132
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 641-653 
    ISSN: 0887-6266
    Keywords: impedance spectroscopy ; chemical and physical changes ; glass formers ; reactive polymers ; in situ monitoring ; dielectric properties ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: A study was conducted aimed at establishing the nature of chemical and physical phenomena in polymeric and nonpolymeric glass formers that can be observed by impedance measurements. Various systems were investigated that undergo a temporal evolution of structure as a result of chemical reactions and physical processes such as crystallization, vitrification, or phase separation. Distinct and systematic changes in impedance during crystallization and vitrification confirmed that these events could be monitored by impedance spectroscopy. Of particular interest was the potential use of impedance measurements in detecting gelation in crosslinking polymers. It was shown that the experimentally observed “knee” in imaginary impedance during reaction shifts with frequency and, hence, cannot be used to measure gelation. But a new insight at the molecular level was obtained by employing a novel experimental approach based on simultaneous dielectric-infrared measurements. Evidence was generated to support the formation of a hydrogen-bonded complex in the vicinity of gel point in polymer networks, which affords a vehicle for the migration of intrinsic charges and provides a contribution to the overall conductivity. This finding should be explored further because it suggests the possibility of correlating dielectric response with gelation. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 641-653, 1998
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 133
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 629-640 
    ISSN: 0887-6266
    Keywords: poly(acrylonitrile) ; two-stage draw ; morphology and tensile properties ; effect of molecular weight ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Ultradrawing of atactic poly(acrylonitrile) (PAN) was investigated for a Mv series, ranging 8.0 × 104-2.3 × 106. Samples for the draw were prepared from 0.5-30 wt % solutions of PAN in N,N′-dimethylformamide. The solutions were converted to a gel by quenching from 100 to 0°C. The dried gel films were initially drawn uniaxially by solid-state coextrusion (first-stage draw) to an extrusion draw ratio (EDR) of 16, followed by further tensile draw at 100-250°C (second-stage draw). The maximum total draw ratio (DRt,max) and tensile properties achieved by two-stage draw increased remarkably with sample Mv. Other factors affecting ductility were the solution concentration from which gel was made and the second-stage draw temperature. The effects of these variables became more prominent with increasing Mv. The temperature for optimum second-stage draw increased with sample Mv. Both the initial gel and the drawn products showed no small-angle X-ray long period scattering maximum, suggesting the absence of a chain-folded lamellae structure, which had been found in our previous study on the drawing of nascent PAN powder. The chain orientation function (fc) and sample density (ρs) increased rapidly with DRt in the lower range (DRt 〈 30) and approached constant values of fc = 0.980-0.996 and ρs = 1.177-1.181 g/cm3, respectively, at higher DRt 〉 30-100. The tensile modulus also showed a similar increase with DRt. The tensile strength increased linearly with DRt, reaching a maximum, and decreased slightly at yet higher DRt. The highest modulus of 28.5 GPa and strength of 1.6 GPa were achieved with the highest Mv of 2.3 × 106. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 629-640, 1998
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 134
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1579-1590 
    ISSN: 0887-6266
    Keywords: infrared spectroscopy ; polymer blends ; poly(vinyl cinnamate) ; UV curing ; hydrogen bonds ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The results of an infrared spectroscopic characterization of poly(vinyl cinnamate) (PVCIN) and its blends with poly(4-vinyl phenol) (PVPh) are reported before and after photo-crosslinking the PVCIN by exposure to UV radiation. The purpose of this article is to demonstrate methodology, and it is shown that quantitative analysis of the fraction of unsaturated (—C=C—) double bonds, “free” (non-hydrogen bonded) and hydrogen bonded unsaturated (—CO—C=C—) and saturated (—CO—C—C—) acetoxy carbonyl groups is feasible in these blends as a function of UV exposure time. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1579-1590, 1998
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 135
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1591-1594 
    ISSN: 0887-6266
    Keywords: polypyrrole film ; contraction ; electric field ; desorption ; actuator ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: No abstract.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 136
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1609-1616 
    ISSN: 0887-6266
    Keywords: polymer-surface interactions ; deuterium NMR ; block copolymers ; polymer micelles ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Anionically polymerized poly(α-deuterostyrene) and poly(β-deuterostyrene-b-2-vinylpyridine) (DSVP), selectively deuterated on the styrene backbone, were studied using deuterium wide-line NMR in bulk and adsorbed on silica and alumina. Changes in the segmental dynamics of the bulk and adsorbed polymers were inferred via changes in the NMR line shape with temperature. The DSVP bulk sample, which consisted of micellar aggregrates with a 2-vinylpyridine core, was more rigid than the homopolystyrene of a similar molecular weight. A significant change in mobility occurred at 20°C higher in the DSVP bulk sample than it did in homopolystyrene. The DSVP-adsorbed sample showed more restrictive mobility than bulk DSVP. The spectra of the adsorbed samples contained “rigid” Pake patterns with considerable intensity at temperatures where the collapse of the Pake pattern for the DSVP bulk sample was observed. DSVP bound to the silica surface was found to have a mobility similar to the same copolymer on alumina. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1609-1616, 1998
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 137
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 65-73 
    ISSN: 0887-6266
    Keywords: poly(ether ether ketone) (PEEK) ; poly(ether ketone ketone) (PEKK) ; solvent-induced crystallization ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The relationship between semicrystalline morphology and glass transition temperature has been investigated for solvent-crystallized poly(ether ether ketone) (PEEK) and poly(ether ketone ketone) (PEKK). Solvent-crystallized specimens of both PEEK and PEKK displayed a sizeable positive offset in Tg compared to quenched amorphous specimens as well as thermally crystallized specimens of comparable bulk crystallinity; the offset in Tg for the crystallized samples reflected the degree of constraint imposed on the amorphous segments by the crystallites. Small-angle X-ray scattering studies revealed markedly smaller crystal long periods (d) for the solvent-crystallized specimens compared to samples prepared by direct cold crystallization. The strong inverse correlation observed between Tg and interlamellar amorphous thickness (lA) based on a simple two-phase model was in excellent agreement with data reported previously for PEEK, and indicated the existence of a unique relationship between glass transition temperature and morphology in these poly(aryl ether ketones) over a wider range of sample preparation history and lamellar structure than was previously reported. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 65-73, 1998
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 138
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 85-93 
    ISSN: 0887-6266
    Keywords: polybutadiene ; poly(methyl methacrylate) ; poly(butadiene-block-methyl methacrylate) ; compatibilization ; micelle ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Compatibilization of blends of polybutadiene and poly(methyl methacrylate) with butadiene-methyl methacrylate diblock copolymers has been investigated by transmission electron microscopy. When the diblock copolymers are added to the blends, the size of PB particles decreases and their size distribution gets narrower. In PB/PMMA7.6K blends with P(B-b-MMA)25.2K as a compatibilizer, most of micelles exist in the PMMA phase. However, using P(B-b-MMA)38K as a compatibilizer, the micellar aggregation exists in PB particles besides that existing in the PMMA phase. The core of a micelle in the PMMA phase is about 10 nm. In this article the influences of temperature and homo-PMMA molecular weight on compatibilization were also examined. At a high temperature PB particles in blends tend to agglomerate into bigger particles. When the molecular weight of PMMA is close to that of the corresponding block of the copolymer, the best compatibilization result would be achieved. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 85-93, 1998
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 139
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 75-83 
    ISSN: 0887-6266
    Keywords: barrier polymer ; permeability coefficient ; glass transition temperature ; blend ; sulfone ; oxyethylene ; oxytrimethylene ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Gas barrier properties of alkylsulfonylmethyl-substituted poly(oxyalkylene)s are discussed. Oxygen permeability coefficients of three methylsulfonylmethyl-substituted poly(oxyalkylene)s, poly[oxy(methylsulfonylmethyl)ethylene] (MSE), poly[oxy(methylsulfonylmethyl)ethylene-co-oxyethylene] (MSEE), and poly[oxy-2,2-bis (methylsulfonylmethyl)trimethylene oxide] (MST) were measured. MSEE, which has the most flexible backbone of the three polymers, had an oxygen permeability coefficient at 30°C of 0.0036 × 10-13 cm3(STP)·cm/cm2·s·Pa higher than that of MSE, 0.0014 × 10-13 cm3(STP)·cm/cm2·s·Pa, because the former polymer's Tg was near room temperature. MST with two polar groups per repeat unit and the highest Tg showed the highest oxygen permeability, 0.013 × 10-13 cm3(STP) · cm/cm2·s·Pa, among the three polymers, probably because steric hindrance between the side chains made the chain packing inefficient. As the side chain length of poly[oxy(alkylsulfonylmethyl)ethylene] increased, Tg and density decreased and the oxygen permeability coefficients increased. The oxygen permeability coefficient of MSE at high humidity (84% relative humidity) was seven times higher than when it was dry because absorbed water lowered its Tg. At 100% relative humidity MSE equilibrated to a Tg of 15°C after 2 weeks. A 50/50 blend of MSE/MST had oxygen barrier properties better than the individual polymers (O2 permeability coefficient is 0.0007 × 10-13 cm3(STP)·cm/cm2 ·s·Pa), lower than most commercial high barrier polymers. At 100% relative humidity, it equilibrated to a Tg of 42°C, well above room temperature. These are polymer systems with high gas barrier properties under both dry and wet conditions. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 75-83, 1998
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 140
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 95-104 
    ISSN: 0887-6266
    Keywords: blends ; melting behavior ; miscibility ; FTIR ; hydrogen bond interactions ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The miscibility of poly(4-hydroxystyrene-co-methoxystyrene) (HSMS) and poly(ε-caprolactone) (PCL) was investigated by differential scanning calorimetry and Fourier transform infrared spectroscopy (FTIR). HSMS/PCL blends were found to be miscible in the whole composition range by detecting only a glass transition temperature (Tg), for each composition, which could be closely described by the Fox rule. The crystallinity of PCL in the blends was dependent on the Tg of the amorphous phase. The greater the HSMS content in the blends, the lower the crystallinity. The polymer-polymer interaction parameter, χ32, was calculated from melting point depression of PCL using the Nishi-Wang equation. The negative value of χ32 obtained for HSMS/PCL blends has been compared with the value of χ32 for poly(4-hydroxystyrene) (P4HS)/PCL blends. The specific nature, quantitative analysis, and average strength of the intermolecular interactions in HSMS/PCL and P4HS/PCL blends have been determined at room temperature and in the molten state by means of Fourier transform infrared spectroscopy (FTIR) measurements. The FTIR results have been in good correlation with the thermal behavior of the blends. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 95-104, 1998
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 141
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1647-1655 
    ISSN: 0887-6266
    Keywords: thermodynamics ; phenolic ; PEO ; polymer blend ; PCAM ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The thermodynamic properties of novolac type phenolic resin blended with poly(ethylene oxide) (PEO) were investigated by the Painter-Coleman association model (PCAM). Equilibrium constants and enthalpy corresponding to the interaction between phenolic and poly(ethylene oxide) were calculated from the Fourier transform infrared spectroscopy of low molecular weight analogues in dilute solutions. The association parameters of the model compounds are transferred to the corresponding polymers, to predict the Gibbs free energy, phase behavior, and the degree of hydrogen bonding in the polymer blend. The heat capacity (CP) and the excess heat capacity (ΔCP) are used to verify the validity of PCAM model on predicting the thermodynamics properties of phenolic/PEO blend. It is found that the hydrogen bonding interaction dominates at moderate temperatures, which is outweighed by the dispersion force at higher temperature or high PEO compositions. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1647-1655, 1998
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 142
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 127-131 
    ISSN: 0887-6266
    Keywords: geminate pair ; luminescence quenching ; diffusion coefficient ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Oxygen diffusion in atactic poly(methyl methacrylate) has been studied by anthracene luminescence quenching in geminate pairs anthracene-oxygen at 77-130 K. Analysis of the experimental data shows that the luminescence quenching is well accounted for by a polychromatic model assuming a log-normal diffusion coefficients distribution due to inhomogeneity of polymer structure. Energy activation is equal to 30 ± 1 KJ/mol. All diffusion coefficients data in the range 77-300 K demonstrate a good linear Arrhenius law. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 127-131, 1998
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 143
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 133-141 
    ISSN: 0887-6266
    Keywords: recrystallization rate ; equilibrium melting temperature ; differential scanning calorimetry (DSC) ; poly(butylene terephthalate) (PBT) ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: A method is described for measuring the heat and rate of recrystallization following partial melting. The method uses a specific sequence of temperatures with a differential scanning calorimeter, and the melting and recrystallization processes were confirmed by optical observations. The method was applied to poly(butylene terephthalate). The rate of recrystallization was found to be roughly two orders of magnitude faster than isothermal crystallization from the melt. The melting temperatures obtained from recrystallization were used in the Hoffman-Weeks equation to deduce 236°C as the equilibrium melting temperature for poly(butylene terephthalate). © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 133-141, 1998
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 144
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 113-126 
    ISSN: 0887-6266
    Keywords: enthalpy relaxation ; physical aging ; DSC ; glassy state ; thermoplastic polymers ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The enthalpy relaxation of a series of linear amorphous polyesters (poly(propylene isophthalate) (PPIP), poly(propylene terephthalate) (PPTP), poly(ethylene terephthalate) (PETP), and poly(dipropylene terephthalate) (PDPT)) has been investigated by differential scanning calorimetry (DSC). These polyesters have been annealed at equal undercooling below their respective glass transition temperatures, Tg, (Tg - 27°C, Tg - 15°C, and Tg - 9°C) for periods of time from 15 min to 480 h. The key parameters of structural relaxation, namely the apparent activation energy (Δh*), the nonlinearity parameter (x) and the nonexponentiality parameter (β), have been determined for each polyester and related to an effective relaxation rate (1/τeff) and to the chemical structure. We observe that the variation of the structural relaxation parameters shows a trend that is common to other polymeric systems, whereby an increase of x and β corresponds a decrease in Δh*. The comparison of these parameters in PETP and in PPTP gives information about the effect of the introduction of a methyl group pendant from the main chain; the x parameter increases (i.e., a reduced contribution of the structure to the relaxation times), β increases (i.e., a narrow distribution of relaxation times), and Δh* decreases. Additionally, enthalpy relaxation experiments show that a decrease of Δh* correlates with an increase of 1/τeff, when they are measured at a fixed value of the excess enthalpy, δH. The introduction of an isopropyl ether group in PDPT with respect to PPTP decreases both x and β, but increases Δh*, which the rate of relaxation decreases. The ring substitution in PPTP and PPIP originates less significant changes in the structural parameters. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 113-126, 1998
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 145
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 143-154 
    ISSN: 0887-6266
    Keywords: polymer simulation ; stress relaxation ; molecular dynamics ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: We have been developing a physical picture on the atomic level of stress relaxation in polymer melts by means of computer simulation of the process in model systems. In this article we treat a melt of freely jointed chains, each with N = 200 bonds and with excluded-volume interactions between all nonbonded atoms, that has been subjected to an initial constant-volume uniaxial extension. We consider both the stress relaxation history σ(t) based on atomic interactions, and the stress history σe(t; NR) based on subdividing the chain into segments with NR bonds each, with each segment regarded as an entropic spring. It is found that at early times σ(t) 〉 σe(t; NR) for all NR, and that, for the remainder of the simulation, there is no value of NR for which σ(t) = σe(t; NR) for an extended period; by the end of the simulation σ(t) has fallen just below the value σe(t; 50). The decay of segment orientation, 〈P2(t; NR)〉, and of bond orientation 〈P2(t; 1)〉, is computed during the simulation. It is found that the decay of the atom-based stress σ(t) is closely related to that of 〈P2(t; 1)〉. This result may be understood through the concept of steric shielding. The change in local structure of the polymer melt during relaxation is also studied. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 143-154, 1998
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 146
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 155-162 
    ISSN: 0887-6266
    Keywords: polyimides ; reflectivity ; moisture absorption ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Water absorption in thin films (〈1000 Å) of a commercial polyimide was evaluated by monitoring dimensional changes induced by a humid environment. Film thickness was measured using x-ray reflectivity, which is a nondestructive technique offering angstrom resolution in the measurements of thin film or multilayer thickness. The effect of several variables on the absorption of moisture were monitored in polyimide films adhered to polished silicon substrates, including total dry film thickness, exposure time, and the contribution of a coupling agent. The percentage increase in film thickness due to moisture uptake is found to be a weak function of dry film thickness, decreasing as dry film thickness increases, and to be somewhat affected by the use of an interfacial coupling agent. The observed behavior points to the polymer/substrate interface as a strong factor controlling the absorption of moisture in the polyimide/silicon system, and is believed to reflect the presence of a highly moisture-saturated interfacial layer. A bilayer model is proposed, and the feasibility of using this model to describe the observed behavior is considered. Published 1998 John Wiley & Sons, Inc.This article is a US Government work and, as such, is in the public domain in the United States of America. J Polym Sci B: Polym Phys 36: 155-162, 1998
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 147
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 171-180 
    ISSN: 0887-6266
    Keywords: integral sorption ; rubbery polymers ; moving boundaries ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Simple equations are derived that describe integral sorption and desorption experiments under conditions where moving boundary effects in polymer films and spheres can be large because of high solvent concentrations. General conclusions are formulated about the nature of sorption and desorption experiments for both rectangular and spherical geometries. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 171-180, 1998
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 148
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 163-169 
    ISSN: 0887-6266
    Keywords: acetone ; poly(ethylene terephthalate) ; mass transport ; solvent-induced crystallites ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The acetone transport in poly(ethylene terephthalate) (PET) and related phenomena was investigated. Based on Harmon's model for Case I, Case II, and the anomalous transport, we analyzed the data of mass uptake. The diffusivity for Case I and the velocity for Case II satisfied the Arrhenius plot. It was found that the solvent moves from outer surfaces to the center according to Case I kinetics, and there is movement in the opposite direction according to Case II kinetics during the mass uptake. This result indicated that pure Case II behavior did not appear in the PET-acetone system. The saturated amount of acetone in PET satisfied the van't Hoff plot. X-ray diffraction pattern and DSC curve showed solvent-induced crystallites and thermal crystallites. The results of density measurement explained the difference of the sorption kinetics between the acetone-treated PET crystallites and thermally treated PET. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 163-169, 1998
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 149
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2005-2013 
    ISSN: 0887-6266
    Keywords: sphere doublets ; light scattering ; suspension ; flow ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The polarized or depolarized light scattering by well-defined monodispersed sphere doublets is investigated. Two configurations of doublets are studied. In the first (at rest) the doublets are randomly oriented in a plane, in the second the doublets are oriented in a preferred direction. This is achieved by submitting a suspension of doublets to a shear flow. The scattering patterns are compared to two theoretical predictions based on simplified geometries. In the first approach, the doublet is approximated by two interpenetrating spheres scattering independently, whereas in the second, an ellipsoid geometry is used. A good qualitative comparison is obtained. However, the HV and VH patterns of a randomly dispersed suspension are not similar. The observation of the flow of a doublet suspension in shear shows that the doublets are spiraling around the vorticity axis. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2005-2013, 1998
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 150
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 191-200 
    ISSN: 0887-6266
    Keywords: ultrathin films ; polymer blends ; phase separation ; atomic force microscopy ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The phase separation of ultrathin polymer blend films of deuterated poly(styrene)/poly(vinylmethylether) leads to a variety of film morphologies, depending on polymer composition. Phase-separation measurements are made at a constant temperature difference from the critical temperature, leading to a bicontinuous spinodal decomposition pattern for near-critical blend compositions and to “mounds” and “holes” for PVME-rich and dPS-rich off-critical mixtures, respectively. Reverse temperature jumps of the phase-separated blend films into the one-phase region result in dissolution of the undulating surface patterns, confirming the phase-separation origin of the film patterns. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 191-200, 1998
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 151
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 201-212 
    ISSN: 0887-6266
    Keywords: tetramethyl bisphenol-A polyarylate ; aliphatic polyester ; blend ; miscibility ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The phase behavior of blends of tetramethyl bisphenol-A polyarylate (TMPAr) with various linear aliphatic polyesters characterized by the ratio of aliphatic carbons to ester groups in the repeating unit, CH2/COO = 3 ∼ 9, was examined by differential scanning calorimetry and dynamic mechanical analysis. TMPAr/aliphatic polyester blends prepared by solvent casting were found to be miscible when the CH2/COO ratio of aliphatic polyesters was larger than 4 and up to 9. The thermodynamic interaction parameter, B for the miscible blends was determined by the analysis of the depression of the melting point of polyester using the Hoffman-Weeks method. From the analysis of the heat of mixing data using a binary interaction model, it was concluded that strong unfavorable intramolecular interaction exists between the —CH2— and —COO— units in aliphatic polyesters and that four substituted methyl groups produces more favorable effects on the miscibility TMPAr with aliphatic polyesters. © 1998 John Wiley & Sons, Inc. J Polym Sci 36: 201-212, 1998
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 152
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 213-219 
    ISSN: 0887-6266
    Keywords: solubility parameter ; hydrogels ; poly(n-vinyl 2-pyrrolidone) ; swelling ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The solubility parameters of pure Poly(n-vinyl 2-pyrrolidone) (PVP) and Poly(n-vinyl 2-pyrrolidone/ethylene glycol dimethacrylate)P(VP/EGDMA) hydrogels have been evaluated via swelling experiments. Twenty solvents with various solubility parameters have been used in the swelling experiments. Considering the limitations of using the approach as developed by Gee, we have applied an asymmetric double sigmodial equation for locating the peak maxima in swelling curves. The solubility parameters are evaluated via this new approach. The solubility parameter of pure PVP is determined to be 11.38 ± 0.11 Hb. The incorporation of EGDMA into the gel system slightly reduced the solubility parameter. The influence of relative amount of EGDMA on the solubility parameter was investigated, and evaluated values compared with literature and theoretically determined solubility values by group contribution values of van Krevelen, Small, and Hoy. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 213-219, 1998
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 153
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 221-235 
    ISSN: 0887-6266
    Keywords: segmented ; polyurethanes ; crosslinked ; properties ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Two series of segmented polyurethanes, one containing 50% soft segments and the other with 70% soft segments were synthesized. Chemical crosslinks were introduced through the hard segment in a controlled way. Chemical polyurethane networks were characterized by swelling. The effect of the degree of crosslinking on properties was examined. It was found that chemical crosslinks in the hard segment reduce the mobility of the soft phase and destroy the crystallinity of the hard phase, but they improve heat stability of the hard domains. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 221-235, 1998
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 154
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1747-1755 
    ISSN: 0887-6266
    Keywords: kinetic sorption ; steady-state permeation/sorption ; polyimide ; carbon molecular sieve ; membrane separation processes ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Typically, materials with high-performance transport properties such as zeolites, carbon molecular sieves, or hyper rigid polymers are inherently difficult or impossible to characterize by steady-state membrane permeation experiments used for conventional polymers. Diffusion coefficients determined by transient sorption, a measurement easily performed on brittle media, are analyzed here and compared to those determined by steady-state permeation/sorption and transient permeation for a glassy polymer and a carbon molecular sieve. Average and local diffusion coefficients are extrapolated to zero upstream partial pressure to eliminate effects caused by concentration dependence. Good agreement between the techniques was observed for the glassy polymer. On the other hand, carbon molecular sieves, possessing a more complex morphology, exhibit a greater difference in diffusion coefficients determined by the various techniques. Nevertheless, comparison of the analysis techniques is shown to provide potentially valuable insights into the morphological features of such carbon molecular sieves. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1747-1755, 1998
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 155
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1769-1780 
    ISSN: 0887-6266
    Keywords: polymer blends ; liquid crystalline polymer ; microfibers ; viscosity reduction ; rheology ; morphology ; X-ray scattering ; composite materials ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Immiscible blends of thermotropic liquid crystalline polymers (TLCP) and a flexible polymer matrix show viscosity reductions and extensive fiber formation under certain flow conditions. Here we study these phenomena by directly examining the TLCP component's molecular orientation and the dispersed phase morphology. The rheology and morphology of blends of polybutylene terephthalate and a thermotropic copolyester (HX-8000 series, DuPont) at concentrations varying from 5 to 30 wt % of TLCP are characterized. It is found that the blends show viscosity reduction as well as stable fiber formation at shear rates dependent on the TLCP content. Wide-angle X-ray scattering is performed to measure the degree of molecular orientation of the TLCP phase. A deconvolution scheme isolates the scattering from the TLCP in the blends and a molecular model enables extracting an experimental orientation factor. It was found that a highly microfibrillated TLCP phase is coupled with an increase in the TLCP molecular orientation to values close to the pure TLCP at similar processing conditions. Further, the microfibrillated TLCP phase is found to be stable within the testing time. Current hypotheses about fiber formation in immiscible blends are tested against the experimental observations. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1769-1780, 1998
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 156
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1793-1793 
    ISSN: 0887-6266
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: No abstract.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 157
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1781-1792 
    ISSN: 0887-6266
    Keywords: bulk modulus ; equation of state ; heat capacity ; high-pressure ; poly(isobutylene) ; thermal conductivity ; transient hot-wire method ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The thermal conductivity λ and heat capacity per unit volume ρcp of poly(isobutylene)s, one 2.8 in weight average molecular weight and one 85 kg mol-1 in viscosity average molecular weight (PIB-2800 and PIB-85000), have been measured in the temperature range 170-450 K at pressures up to 2 GPa using the transient hot-wire method. At 297 K and atmospheric pressure, λ = 0.115 W m-1 K-1 for PIB-2800 and λ = 0.120 W m-1 K-1 for PIB-85000. The bulk modulus BT has been measured in the temperature range 170-297 K up to 1 GPa. At atmospheric pressure, the room temperature bulk moduli BT are 2.0 GPa for PIB-2800 and 2.5 GPa for PIB-85000 with dBT/dp = 10 for both. These data were used to calculate the volume dependence of λ, \documentclass{article}\pagestyle{empty}\begin{document}$$ g = - \left({{\partial\lambda/\lambda}}\over{{\partial V/V}}\right)_{T}. $$\end{document} At room temperature and atmospheric pressure (liquid phase) we find g = 3.4 for PIB-2800 and g = 3.9 for PIB-85000, but g depends strongly on temperature for both molecular weights. The difference in g between the glassy state and liquid phase is small and just outside the inaccuracy of g of about 8%. The best predictions for g are given by the theoretical model of Horrocks and McLaughlin. We have found that PIB exhibits two relaxations, where one is associated with the glass transition. The value for dTg/dp at atmospheric pressure (for the main glass transition) is about 0.21 K MPa-1 for both molecular weights. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1781-1792, 1998
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 158
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1795-1804 
    ISSN: 0887-6266
    Keywords: poly(ether-ester) ; rheology ; multiblock copolymer ; microphase separation transition ; crystallinity ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: A microphase separation transition (MST) of a thermoplastic elastomer based on soft segments of poly(tetra methylene oxide) and hard crystalline segments of poly(tetra methylene terephthalate) has been studied by means of rheological measurements, differential scanning calorimetry (DSC), and wide-angle X-ray scattering (WAXS), showing that the MST is entirely caused by melting/crystallization, and that no separate segmental mixing/demixing transition is involved. DSC and WAXS measurements show that melting starts at 190°C, leading to crystal reorganization effects up to above 200°C, and that a gradual decrease in crystallinity occurs from below 210°C up to 224°C, above which temperature no crystals are left. Rheological measurements reveal a wide MST (207-224°C) upon heating, which coincides perfectly with the melting range. From this coincidence together with the Maxwell fluid behavior directly following the MST, it is concluded that melting leads to a one-phase liquid, and that no separate segmental mixing transition occurs. Similar results are obtained upon cooling, indicating that crystallization is the driving force for phase separation and that no separate segmental demixing step precedes crystallization. The wide MST implies a large processing window over which the rheological properties change from highly elastic, with a distinct yield stress, to normal pseudoplastic, enabling application in preparation of structured blends. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1795-1804, 1998
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 159
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1805-1819 
    ISSN: 0887-6266
    Keywords: polymer blend ; PA6 ; PPE ; epoxy ; reactive compatibilizer ; coupling agent ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: A tetrafunctional epoxy monomer, N,N,N′-N′-tetraglycidyl-4,4′-diaminodiphenyl methane (TGDDM), has demonstrated to be a highly efficient reactive compatibilizer in compatibilizing the immiscible and incompatible polymer blends of polyamide-6 (PA6) and poly(2,6-dimethyl-1,4-phenylene ether) (PPE). This epoxy coupler can react with both PA6 and PPE to form various PA6-co-TGDDM-co-PPE mixed copolymers. These interfacially formed PA6-co-TGDDM-co-PPE copolymers tend to anchor along the interface to reduce the interfacial tension and result in finer phase domains and enhanced interfacial adhesion. A simple one-step melt blending has demonstrated to be more efficient in producing a better compatibilized PA6/PPE blend than a two-step sequential blending. The mechanical property improvement of the compatibilized blend over the uncompatibilized counterpart is very drastic, by considering the addition of a very small amount, a few fractions of 1%, of this epoxy coupling agent. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1805-1819, 1998
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 160
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2153-2163 
    ISSN: 0887-6266
    Keywords: reactive blending ; kinetics ; interface ; mixing ; coalescence ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: We present an experimental study of polymer-polymer reaction kinetics at the interfaces between two immiscible polymer phases under flow in a batch mixer of type Haake Rheocord. To that end, we have developed a model chemical system that is composed of a mixture of polystyrene (PS) and poly(methyl methacrylate) (PMMA). A small fraction of PS bear hydroxyl terminal group (PS-OH) and that of PMMA contain nonclassical isocyanate moieties that are randomly distributed along the PMMA chains (PMMA-r-NCO). This reactive system is particularly pertinent to modeling practical reactive blending processes because the amount and rate of copolymer formation can be determined with great accuracy (on the order of ppm). This study shows that the overall reaction rate is controlled primarily by interfacial generation through convective mixing. Most reaction and morphological development are accomplished within a very short period of time (1-3 min). For a PS/PMMA (60/40) reactive blend, the ultimate size of the PMMA particles is as small as 0.2 μm and is reached within 2 to 3 min. A surface coverage of about 0.5 of the PMMA particles by a monolayer of the copolymer is enough to prevent dynamic coalescence, whereas a much higher surface coverage is needed to eliminate static coalescence. In the nonentangled regime (Mn of the PS-OH = 7800 g/mol), temperature has a significant effect on the reaction rate, while it has little effect in the entangled regime (Mn of the PS-OH = 53,200 g/mol). © 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2153-2163, 1998
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 161
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2111-2128 
    ISSN: 0887-6266
    Keywords: orientation ; physical aging ; free volume ; glass-transition ; dilatometry atactic-polystyrene ; bisphenol A polycarbonate ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: It has recently been demonstrated that hot-drawn samples of bisphenol A polycarbonate (PC) have a 50% higher volume relaxation rate than their isotropic counterpart even though the oriented samples have a lower initial free volume (i.e., higher density).1 In an attempt to better understand this paradox, samples of unaged, hot-drawn PC were characterized thermodynamically and kinetically as a function of orientation. Heat capacity, hole energy, and Tg data indicate that the chain mobility is actually decreasing slightly with orientation, possibly due to the hindered motion brought about by tighter packing, stronger intermolecular bonding, and reduced free volume. Nonetheless, this decrease in localized mobility is in contradiction to the enhanced volume relaxation rates observed for the oriented samples. In contrast, dynamic mechanical data indicate an increase in the relaxation strength of the β-transition (-100°C at 1 Hz) upon stretching for both the stretch and transverse directions. This implies that more segments are actively participating in the relaxation process for the oriented samples even though their individual localized mobility might be slightly lower. The net result is an increase in “effective” mobility for the oriented samples. It is conjectured that the enhanced relaxation strength of the oriented samples is a result of the stretching process somehow activating more of the chains into a higher energy state, and may be related to the physical aging concept of stress-induced rejuvenation/acceleration. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2111-2128, 1998
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 162
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2141-2152 
    ISSN: 0887-6266
    Keywords: N-isopropylacrylamide ; fluorocarbon-containing comonomers ; linear latices ; microgel ; hydrophobicity and hydrophilicity ; transition heat ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: A series of thermally responsive copolymers of N-isopropylacrylamide (NIPAAM) with a fluorinated hydrophobic comonomer, either hexafluoroisopropylmethacrylate (HFIPMA) or 2,2,3,3,4,4-hexafluorobutylmethacrylate (HFBMA) and a hydrophilic comonomer, methacrylic acid (MAA), were synthesized by emulsion polymerization. The chemical structures of the copolymers were studied by the IR technique. Dynamic light scattering (DLS) showed that aqueous latices of the copolymers exhibited swelling-deswelling changes typical to PNIPAAM; the degree of swelling as well as the temperature at which the polymers collapse depended on the chemical structure of the comonomers. Endotherms related to the contraction of the polymers were studied by differential scanning calorimetry (DSC). A combination of DLS and DSC results revealed that the hydrophobic and hydrophilic units in the copolymers strongly affected the swelling behavior, as well as the local environment of the PNIPAAM chains. The comonomer HFIPMA increased the hydrophobicity of NIPAAM, reduced the swelling, and caused coagulation of the copolymer of NIPAAM and HFIPMA at temperatures above the critical temperature. Hydrophobicity of HFIPMA also affected the rheological properties of the latex. The HFBMA comonomer increased the swelling of the latex particles. Methacrylic acid added into the associating copolymers made the copolymers to show polyelectrolyte behavior with an increase of swelling and a decrease of the enthalpy change upon the collapse. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2141-2152, 1998
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 163
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 49-54 
    ISSN: 0887-6266
    Keywords: substituted poly(paraphenylene) ; phase transitions ; synchrotron radiation ; mesophases ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The thermal behavior of poly(para-2,5-didecyl-p-phenylene) has been investigated by differential scanning calorimetry and real time X-ray diffraction. Poly(para-2,5-didecyl-p-phenylene) is a semicrystalline material that crystallizes in a layered structure. The system exhibits two thermal transitions in the investigated temperature range. The first one, occurring at lower temperatures, provokes a reduction of the layered spacing accompanied by an appreciable disordering of the lateral side chains. Above the first transition the material is shearable, highly viscous, and birefringent. Thus, we have associated this transition to the formation of a layered mesophase. The higher temperature transition exhibits a twofold endothermic DSC peak and is characterized by the disappearance of X-ray diffracted intensity. At temperatures above the second transition the system presents the characteristics of an isotropic melt. Consequently, we have associated this transition with the complete disordering of the polymeric backbones. By following an appropriate thermal treatment it has been shown that the twofold shape of the endotherm characterizing the higher temperature transition can be changed into a single endotherm. This effect has been interpreted as being due to the kinetics of main-chain ordering. This ordering seems to proceed by the initial growth of domains with a high level of order followed by the subsequent increase of these domains through the inclusion of less ordered material. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 49-54, 1998
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 164
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 977-982 
    ISSN: 0887-6266
    Keywords: compressed gases ; polymer ; plasticization ; high-pressure DSC ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: A high-pressure differential scanning calorimetric technique is described for studying polymer plasticization by compressed gases at pressures to 100 atm. The in situ measurements avoid problems due to gas desorption encountered with conventional DSCs, thus providing an accurate way to determine the change in glass transition temperature, Tg, with pressure, p. The entire Tg-p curve can be established in less than 2 days. The glass transition was observed as a sharp step in the case of 100-200-μm thin samples, whereas thicker samples gave a broad transition; highly reproducible results were obtained for the thin samples. For PS-CO2, the measured Tgs under various pressures were found to be in good agreement with literature values. Results for the systems PS-HFC134a, PVC-CO2, and PC-CO2 are also reported. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 977-982, 1998
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 165
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 959-968 
    ISSN: 0887-6266
    Keywords: PTMSP ; cross-linking ; membranes ; permeability ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Cross-linkable poly[1-(trimethylsilyl)-1-propyne] (PTMSP) films were cast from toluene solutions containing PTMSP and either 4,4′-diazidobenzophenone or 4,4′-(hexafluoroisopropylidene)diphenyl azide. The composite films were clear and homogeneous and were cross-linked by UV irradiation at room temperature or thermal annealing at 180°C. Low levels of the bis(aryl azide) (1-5 wt %) were effective in rendering the films insoluble in toluene and THF, both good solvents for PTMSP. The process is simple and effective, and thus PTMSP can be readily converted to mechanically stable membranes with permeabilities and separation factors comparable or higher than those of poly(dimethylsiloxane). The films were characterized by measuring their density, their permeability toward O2 and N2, and their spectroscopic properties. Compared to PTMSP, films containing bis(aryl azide) cross-linkers had lower permeabilities and higher separation factors, consistent with a reduction in free volume. When the films were cross-linked photochemically, the permeabilities declined further and the separation factor increased. Films cross-linked thermally had permeabilities comparable to their PTMSP/azide precursors, and density and swelling measurements suggest that higher free volumes are obtained in thermally cross-linked films. All films stored in air suffered from a slow decline in permeability which may reflect slow surface oxidation of the films. When stored in vacuum, cross-linked films were stable and showed no loss in permeability, but the permeability of uncross-linked PTMSP films stored under the same conditions fell to 70% of their original value in 1 month. We attribute the permeability decline to densification accelerated by impurities and solvents. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 959-968, 1998
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 166
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 983-989 
    ISSN: 0887-6266
    Keywords: positron annihilation ; free-volume ; Nafion ; free-volume size distribution ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: We report a new result of free-volume hole size distribution in water and ethanol-swollen Nafion-117 polymer. With the increase in water content, free-volume hole size decreases, but overall the volume fraction increases. The hole size distribution in dry polymer is seen to be distinctly different from hydrated membranes. The narrow and symmetric distribution in hydrated membrane as compared to dry membrane is believed to be a consequence of crosslinking due to cluster formation. In alcohol-swollen membranes, on the other hand, not only are the free-volume size and fraction seen to be higher, the hole size distribution is seen to be broader compared to dry or hydrated membranes, indicating the effect of penetration of alcohol into the hydrophobic backbone region. We have also examined our results vis-a-vis reported gas diffusion studies in Nafion in the framework of existing free-volume model. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 983-989, 1998
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 167
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 357-371 
    ISSN: 0887-6266
    Keywords: gelation theory ; nonlinear polymerization ; molecular weight distribution ; branched polymers ; polymer modification ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: A Markovian model is proposed for nonrandom branching reactions, by using free-radical polymerization that involves chain transfer to polymer as an example. Free-radical polymerizations are kinetically controlled; therefore, each primary polymer molecule experiences different history of branched structure formation. By assuming that the primary chains with the identical birth time conform to the same chain connection probabilities, the nonlinear structural development can be viewed as a system in which the primary chains formed at different birth times are combined into nonlinear polymers in accordance with the first-order Markov chain statistics. An explicit formula for the weight-average chain length is derived in a matrix form. The onset of gelation is simply stated as a point at which the largest eigenvalue of the transition matrix X reaches unity, i.e., det(X - I) = 0. This criterion for the onset of gelation can be considered as an extension of the Flory/Stockmayer theory to a nonequilibrium reaction system. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 357-371, 1998
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 168
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 373-381 
    ISSN: 0887-6266
    Keywords: pressure-sensitive adhesive ; PSA ; tackifier ; tack adhesion ; polyisoprene ; poly(ethylene-propylene) ; pulsed gradient spin echo-nuclear magnetic resonance ; PGSE-NMR ; diffusion ; n-butyl ester of abietic acid ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: A detailed study of the mobility of a tackifying resin in a pressure-sensitive adhesive (PSA) has been done for the first time. The objective of this work is to relate changes in adhesive performance with tackifier loading to tackifier mobility. Tackifiers are low-molecular weight resins that improve the overall performance of PSAs. They increase the adhesive tack or the ability to form a bond of measurable strength after brief contact under slight applied pressure. In this study the diffusion of n-butyl ester of abietic acid (n-BEAA) in either polyisoprene (PI) (Mw = 195,000 Mw/Mn ∼ 1.05) or poly(ethylene-propylene) (PEP) (Mw = 40,000 Mw/Mn ∼ 2.30) was measured by Pulsed Gradient Spin Echo-Nuclear Magnetic Resonance (PGSE-NMR) as a function of both tackifier concentration and temperature. The concentration dependence of the tackifier's diffusion coefficient was weak for both systems. The weak variation in mobility with composition for the PI/n-BEAA system was consistent with that system's weak variation in tack with composition. On the other hand, blends of PEP/n-BEAA showed only modest variation in mobility, even though these adhesive systems showed appreciable enhancement of tack at intermediate compositions. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 373-381, 1998
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 169
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 705-714 
    ISSN: 0887-6266
    Keywords: molecular weight distribution ; comb copolymer ; branching ; grafting ; nonlinear polymerization ; modeling ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Grafting one type polymer onto a different polymer type may yield a comb-branched copolymer. The branching density has a significant effect on its overall molecular weight distribution. A general model is derived to describe the bivariate distribution of molecular weight and branching density for such comb copolymers. The model is applicable for various grafting mechanisms provided the side chains are randomly grafted onto the backbone. The determining parameters are the molecular weight distributions of backbone and side chains, and the branching density. Analytical expressions are obtained for the cases of the side chains having uniform and Schulz-Zimm distributions. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 705-714, 1998
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 170
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 715-725 
    ISSN: 0887-6266
    Keywords: polyethylene ; ion implantation ; surface structure ; wear ; hardness ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Polyethylene (PE) film was implanted with 1000-keV Ar+ ions to a fluence of 5 × 1014 ions/cm2 under high vacuum conditions (2.5 × 10-6 torr) and the film surface was investigated by means of microhardness and microwear measurements, and FTIR/ATR, Raman, and XPS techniques. Ion implantation significantly increased the subsurface hardness and also significantly improved the microwear resistance of the polymer. The implanted surface region of the film was found to consist of two distinct layers. One was the outermost carbon layer with a thickness of the order of 10 nm. In this layer, ca. 75% of carbon atoms were combined by graphitic sp2 and diamond-like sp3 bonds, and the remaining 25% had chemical links with oxygen atoms. Spectroscopic data suggested that the sp2-bonded carbons segregated in graphite-like clusters containing imbedded oxygen atoms, interconnected by the sp3-bonded carbons. The other was the subsurface layer resulting from PE oxidation after ion-beam treatment. This layer was characterized by high contents of O—H and C=O groups as well as ester and double bonds. The chemical composition of the layer was uniform and did not vary over the layer thickness of about 1.4 μm. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 715-725, 1998
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 171
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 727-741 
    ISSN: 0887-6266
    Keywords: liquid crystal polymer ; aromatic polyester ; molecular modeling ; Monte Carlo ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The condensed phase of the alternating copolyester of p-hydroxybenzoic acid (HBA) and 2-hydroxy-6-naphthoic acid (HNA) is investigated by studying the room temperature packing arrangement of the copolymer chains. A molecular modeling methodology is employed with a Monte Carlo sampling of the configurational phase space. Realistic poly(HBA-alt-HNA) polymer chains are represented by an explicit atom representation of the HBA/HNA dimers. States are sampled from the NVT ensemble using a sampling scheme consisting of (1) valence and torsional variations, (2) rigid body rotations of the chain about the chain axis, and (3) rigid body translations of the chain. The effect of chain packing on the conformation of chains, as well as the relative intra- and intermolecular orientations of aromatic rings, is investigated. Correlation of chain positioning along the chain axis is dominated by aromatic rings maintaining a center-to-center plane of registry. These layers of aromatic units pack with a preference for edge-to-face orientations in a herringbone-type pattern and have an intermolecular ring angle between the pairs of aromatic rings in the unit cell that is ca. 68°. The aromatic rings, on average, are rotated 38° out from the b-c plane. The phenylene rings of these copolyesters are less restricted in their relative orientation in comparison to the naphthalene rings. Intramolecular orientational probability density distributions indicate a preference for staggering the successive aromatic rings along the chain, with a staggering angle of ca. 66°. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 727-741, 1998
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 172
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 743-753 
    ISSN: 0887-6266
    Keywords: polyacrylamides ; specific viscosity ; polyelectrolyte solutions ; light scattering ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The dependences of the specific viscosity of several polyelectrolytes on polyelectrolyte concentration, salt concentration or solution ionic strength, solution pH value, solvent quality, and solution temperature were systematically investigated. We found that the specific viscosity obeys a more general relation: ηsp = Acp2/(cp + 2cs)3/2 + B, where ηsp is the polyelectrolyte specific viscosity, cp and cs are polymer and salt concentrations, respectively. The prefactor A depends critically on chain size, solvent quality, and temperature in qualitative agreement with the theory proposed by Rabin et al. The intercept B is nonzero or less than zero in polyelectrolyte solutions with low ionic strength. When a sufficient amount of salt has been added, B is reduced to zero and we recover the Rabin et al.'s relation. The physical interpretation for the intercept B is that it represents the inverse of the strength of electrostatic interaction between a polyion and counterions, in quantitative agreement with the well-known emperical Fuoss's relation. Furthermore, the existence of nonzero B allows us to calculate the condition for the maximum in the reduced viscosity-polymer concentration curve in a polyelectrolyte solution system without salt. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 743-753, 1998
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 173
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 755-761 
    ISSN: 0887-6266
    Keywords: positron annihilation lifetime spectroscopy ; free volume ; transition temperatures ; poly(silylenemethylene)s ; dynamic mechanical analysis ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Amorphous and crystalline poly(silylenemethylene)s with the repeating PhRSiCH2 (R : Me or Ph) units were characterized by positron annihilation lifetime spectroscopy (PALS) to gain insights into the molecular motions of these polymers. The temperature dependence of the ortho-positronium lifetime (τ3) and intensity (I3) was examined from 50 to 470 K for each sample. The glass transition temperature of each polymer was easily distinguished by a change in the slope of τ3 spectrum. Both polymers exhibited a steep drop of I3 at 130-140 K being probably assignable to the transition arising from the motions of phenyl groups, which was almost undetectable by means of differential scanning calorimetry or dynamic mechanical analysis. Several other transitions of these polymers detected by PALS are also discussed. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 755-761, 1998
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 174
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 425-431 
    ISSN: 0887-6266
    Keywords: poly(arylene ether ketone) ; gas permeability ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: In this work we present the results from studies on novel poly(arylene ether ketone)s, including gas permeability, wide-angle x-ray diffraction (WAXD), and dynamic mechanical analysis (DMA). Poly(arylene ether ketone)s containing 2,2′- and 3,3′-dibenzoylbiphenyl (DBBP) moieties were characterized to study the effect of biphenyl substitution on gas transport properties. Gas permeabilities of naphthalene-containing poly(arylene ether ketone)s were also measured. Higher permeabilities were observed for polymers prepared with 6F-BPA, compared to 9,9-bis(4-hydroxyphenyl)fluorene (HPF). The naphthalene-containing polymers exhibited higher permeabilities than the DBBP polymers, except for a polymer having the 2,2′-DBBP and tetramethylbiphenyl moieties. Based on our work, and results reported in the literature, the 3,3′-DBBP polymers showed the lowest permeabilities for DBBP-containing poly-(arylene ether ketone)s. The low permeabilities are due to more efficiently packed chains brought on by greater flexibility of the backbone, compared to the other polymers studied. DMA studies confirmed the higher barriers to rotation which are believed to be responsible for 2,2′-DBBP polymers having similar selectivities compared to 3,3′-DBBP polymers. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 425-431, 1998
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 175
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 433-438 
    ISSN: 0887-6266
    Keywords: liquid-crystalline ; polymers ; network ; fibers ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Preliminary results on the synthesis and characterization of anisotropic networks, oriented on a macroscopic scale, are reported. Fiber samples of segmented thermotropic liquid-crystalline polymers bearing the oxypentenyl lateral substituent have been crosslinked via thermally activated radical reaction. This was made possible by immersion of fiber samples in dichloromethane containing t-butylperoxybenzoate as activating agent, thus allowing its diffusion in the samples. Subsequent annealing at 145°C brings us to an anisotropic network with no loss of the original orientation. A mesophase is stabilized and no structural modification is observed by heating samples from room temperature up to 400°C, where thermal decomposition takes place. Crosslinked fibers exhibit good tensile properties, at both room temperature and at 150°C. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 433-438, 1998
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 176
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 439-445 
    ISSN: 0887-6266
    Keywords: cholesteric order ; electron microscopy ; periodical lamellar structure ; macromolecules ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The macromolecular cholesteric structure in the ethyl-cyanoethyl cellulose [(E-CE)C]/acrylic acid [AA] cholesteric liquid crystalline solutions is studied by directly observing the morphology and structure of the ethyl-cyanoethyl cellulose [(E-CE)C]/polyacrylic acid [PAA] using electron microscopy. A periodical lamellar structure is observed in ultrathin slices of the composites with cholesteric order by both transmission electron microscopy (TEM) and low-voltage scanning electron microscopy (LVSEM). It is suggested that the periodical lamellar structure is induced by the twist of the molecular orientation in the cholesteric phase and reflects the structural features of the macromolecular cholesteric phase. The macromolecular cholesteric phase exhibits the twisted ring morphology in the initial stage of the formation of the liquid crystalline phase. The swelling of the ultrathin slices with cholesteric order in water is heterogeneous, which suggests the tight packing of the (E-CE)C chains in the direction of the helix axis in the macromolecular cholesteric phase. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 439-445, 1998
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 177
    ISSN: 0887-6266
    Keywords: poly(methylphenylsiloxane) ; poly(dimethylsiloxane) ; titania ; silica ; composites ; reinforced elastomers ; morphology ; stress-strain isotherms ; scattering intensities ; differential scanning calorimetry ; transmission electron microscopy ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The work reported in the preceding article in this series is extended by consideration of polysiloxane-ceramic composites based on atactic poly(methylphenylsiloxane) (PMPS) elastomers instead of poly(dimethylsiloxane). The former is noncrystallizable because of its stereochemically irregular structure, while the latter is crystallizable. In addition, some composites were prepared by the in situ precipitation of titania instead of silica. The resulting materials were characterized using differential scanning calorimetry, equilibrium stress-strain measurements in elongation, small-angle neutron scattering, and transmission electron microscopy. The moduli of the PMPS elastomers were found to increase significantly with increase in amount of either type of filler, with reinforcing upturns at high elongation in the case of the silica. Because the PMPS elastomers were amorphous, it is obvious that strain-induced crystallization is not required for these upturns in modulus. Titania did not give as good reinforcement as did silica, at least in the case of PMPS. Differences in interactions between the polymer and the two fillers are obviously important in this regard, but differences in particle morphology probably also contribute. Specifically, the titania “particles” were significantly larger than the silica particles when observed in TEM, and appeared to be much more porous. The actual domain size as measured by scattering, however, was only approximately 5% larger. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1191-1200, 1998
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 178
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1211-1218 
    ISSN: 0887-6266
    Keywords: polyethylene ; slow crack growth ; γ-irradiation ; crosslinks ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The effects of γ-irradiation were measured in a HDPE and in the resin after it was recrystallized. The fracture mode of the initial material transformed from crazing to complete brittle failure at a critical dose. The failure mode of the recrystallized material transformed from crazing to shear deformation, which produced an extremely long failure time, and finally, at a higher dose, its fracture became brittle. The relationship between morphology and slow crack growth is presented where crosslinking was the major factor. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1211-1218, 1998
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 179
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 463-471 
    ISSN: 0887-6266
    Keywords: hydrogel ; free volume ; positron annihilation ; water ; density ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: A copolymer of 2-hydroxyethyl methacrylate (HEMA) with 2-ethoxy ethyl methacrylate (EEMA) was synthesized and the molecular mobility, free volume, and density properties examined as a function of composition. These properties were correlated with the equilibrium water uptake in order to determine which of the properties were most influential in causing high water sorption, as these materials are suitable candidates for hydrogel systems. It was found that the polar HEMA repeat unit results in a rigid, glassy sample at room temperature due to the high degree of hydrogen bonding between chains whereas high EEMA content leads to rubbery samples with subambient glass transition temperatures. The free volume properties on the molecular scale measured by positron annihilation lifetime spectroscopy (PALS) showed that higher HEMA content led to smaller, fewer holes and a lower free volume fraction than EEMA. Therefore the high water uptake of HEEMA-containing copolymers is largely related to the high polarity of the HEMA unit compared to EEMA, despite the low content of free volume into which the water can initially diffuse. Trends in density with copolymer composition, as measured on a macroscopic level, differs to that seen by PALS and indicates that the two techniques are measuring different scales of packing. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 463-471, 1998
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 180
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 483-494 
    ISSN: 0887-6266
    Keywords: small penetrants ; sorption isotherms ; site distribution ; elastic distortion ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Pressure-composition isotherms were determined at 20°C for CO2 in Kapton and various substituted polycarbonates and for H2O, Ar, N2, CH4, and acetone in bisphenol-A-polycarbonate. The isotherms are described by two parameters an average free energy of sorption and a width of a Gaussian distribution of free sorption energies. Within the framework of a recent model these parameters can be calculated assuming an elastic distortion of the polymer caused by the incorporation of solute atoms in preexisting holes. By comparing experimental values with predictions of the model the experimental width of the free energy distribution is only 30% smaller than the theoretical one. Functional relationships are obeyed between the sorption parameters on the one hand and glass transition temperature, average hole volume, and molecular volume of the solute on the other hand. Deviations occur for larger molecules like acetone and ethylene which are attributed to a viscoelastic distortion of the polymer. Comparing free energies of solution for the rubbery and glassy state of the polymer reveals more negative values for the glassy polymers despite their extra elastic distortion energy. This discrepancy is overcome by taking into account that the occupied volume has to be re-formed in the case of the rubbery or liquid polymer. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 483-494, 1998
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 181
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 473-481 
    ISSN: 0887-6266
    Keywords: PET fiber ; continuous zone-drawing/zone-annealing ; high-modulus ; mechanical properties ; microstructure ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: A continuous zone-drawing/zone-annealing method was applied to poly(ethylene terephthalate) fibers in order to improve their mechanical properties. Apparatus used for this treatment was assembled in our laboratory. The continuous zone-drawing treatment was carried out at a drawing temperature of 103°C under an applied tension of 6.6 MPa to fully orient amorphous chains in the drawing direction without inducing thermal crystallization. The continuous zone-annealing treatment was carried out twice at an annealing temperature of 160°C under 102.2 MPa and at 183°C under 161.1 MPa to crystallize the highly oriented amorphous chains. The fiber was continuously drawn and annealed at a rate of 420 mm/min. The fiber obtained had a birefringence of 0.260, a degree of crystallinity of 55%, a tensile modulus of 18 GPa, and a storage modulus of 21 GPa at 25°C. Despite the large difference in the treating speed between the continuous zone-annealing and zone-annealing, their values are approximately equal to those of the zone-annealed PET fiber that was reported previously. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 473-481, 1998
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 182
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1247-1260 
    ISSN: 0887-6266
    Keywords: polyimides ; thin films ; infrared spectroscopy ; molecular structure ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The molecular structure of poly[biphenyl dianhydride-p-phenylenediamine] (BPDA-PDA) polyimide in ultrathin (3-300 nm) films on silicon has been characterized by polarized infrared spectroscopy in conjunction with ellipsometry and X-ray reflectivity measurements. In spite of the high degree of crystalline packing of the polymer chains, the results show that an unexpected and significant content of imide rings exhibit local structural perturbations, including out-of-plane twisting. Further, the fraction of perturbed rings increases with increasing film thickness while, in contrast, the high degree of in-plane uniaxial film symmetry and planar stacking of the chains remain constant with thickness. These results reveal a new structural aspect of localized ring disorder that arises within the otherwise well-ordered, chain-stacked structure of BPDA-PDA polyimide films. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1247-1260, 1998
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 183
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 861-871 
    ISSN: 0887-6266
    Keywords: glass transition ; polymer blends ; free volume ; positron annihilation ; composition dependence of Tg ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: High-Vinyl Polybutadiene (HVBD)/cis-Polyisoprene (CPI) blends were characterized by Differential Scanning Calorimetry (DSC) and Positron Annihilation Lifetime Spectroscopy (PALS). A single DSC glass transition temperature Tg is observed, whose composition dependence strongly deviates from additivity, and shows an apparent cusp when the weight fraction of HVBD ≈ 0.75. The free-volume hole size, Vh, and the scaled fractional free volume, hps/C, = I3Vh were determined by PALS from the orthopositronium (o-Ps) intensities, I3, and lifetimes, τ3, over a temperature range encompassing Tg and the temperature at which “positronium bubble” formation occurs. In the glass, Vh and hps/C are smaller for CPI than for HVBD, but the thermal expansion coefficient for hole volume, αf, is larger in the melt for CPI than for HVBD; thus, an iso-hole volume temperature occurs in these blends at Tiso ≈ -34°C. Above and below Tiso, Vh and hps/C each show a negative departure from additivity. A quantitative interpretation of the cusp in the composition dependence of Tg can be obtained, via a modified analysis of Kovacs, using free-volume quantities from PALS, with the ratio of scaling constants CCPI/CHVBD as an adjustable parameter. At high temperatures, the positron bubble size is smaller in CPI than in HVBD. This agrees with the observation that the thermal expansivity of hole volume, and, hence the internal pressure are larger in the equilibrium melt of CPI. The effect of e+-irradiation on the o-Ps intensity was investigated. I3 decreases more rapidly in the melt as T → Tg, and then more slowly in the glass, suggesting that the effect is due to trapping of radical or ionic species which inhibit o-Ps formation. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 861-871, 1998
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 184
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 873-888 
    ISSN: 0887-6266
    Keywords: crystallization ; polymer blends ; pattern formation ; numerical simulation ; syndiotactic polystyrene ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The development of texture which exists in polymer spherulites grown from single phase melts containing an appreciable amount of noncrystallizable material was investigated. This texture generally consists of lamellar bundles separated by amorphous regions, both of which are typically 0.1-1 μm thick. A space-time finite element model previously developed by us was used to simulate the growth of a group of polymer lamellae. The model determines the impurity concentration field in the melt surrounding the growing lamellae and tracks the growth of each lamella. Important variables are the initial melt concentration of noncrystallizable material, the mass diffusion coefficient of noncrystallizable species, lamellar thickness, long period, and the rate of molecular attachment at the growth front. Under certain conditions, bundles did indeed develop during the simulations. These results were used to predict bundle thicknesses. The predictions of bundle texture were compared to actual textures observed in blends of syndiotactic and atactic polystyrene. It was found both experimentally and numerically that bundle thickness was a strong function of crystallization temperature and a relatively weak function of both the initial composition of noncrystallizable species and the degree of crystallinity of the lamellar stack. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 873-888, 1998
    Additional Material: 25 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 185
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 889-900 
    ISSN: 0887-6266
    Keywords: Pluronic P103 ; micellar formation and structure ; supramolecular structure ; laser light scattering ; small-angle X-ray scattering ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Both laser light scattering (LLS) and small-angle X-ray scattering (SAXS) were used to study the water-induced formation and structure of micelles and supramolecules of Pluronic P103 [(EO)17(PO)60(EO)17] in o-xylene, a selective solvent for the long middle block. In pure o-xylene, P103 molecules exist as unimer coils with an equivalent hard-sphere radius of 1.6 nm even at fairly high concentrations. Micelles with a PEO/water core and a PPO dominated corona were formed in the presence of water when the P103 concentration ≥0.046 g/mL. The size and structure of micelles have been studied as a function of solubilized water content Z (the molar ratio of water to EO units) in micelles. The micelles change from a somewhat open structure with some EO units either dangling out of the micellar core or being incorporated into neighboring micellar cores at low Z values to a flower-like structure with relatively sharp interface at high Z values. At low Z values (〈 about 2.9), micelles tend to have a structure with part of the poorly solvated PEO blocks present in the corona. With more water added to the core, the PEO blocks in the corona gradually entered into the core, and the PPO blocks backfolded to form loops. With increasing Z, the micellar core radius, Rc, and the hard-sphere volume fraction, φ, of micelles increased; the aggregation number, N, kept nearly a constant; but the hydrodynamic radius, 〈Rh〉0, and the corona thickness, Rs, decreased. At high Z values (〉 about 2.9), micelles have a flower-like structure with the two end PEO blocks belonging to the small micellar core. With increasing Z, the values of Rc, φ, and N increased, while Rs kept nearly a constant. In the concentrated regime (C 〉 0.30 g/mL), a stiff polymer network at a critical φ value of 0.49 was formed. The supramolecular structures with a face-center cubic packing, and a possible hexagonal packing at higher polymer concentrations (i.e. 〉 0.55 g/mL), were observed, respectively. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 889-900, 1998
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 186
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 901-911 
    ISSN: 0887-6266
    Keywords: activation volume ; relaxation ; pressure ; polymer ; reorientation ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Second harmonic generation (SHG) was used to measure the temperature dependence of the reorientation activation volume of 4-(diethylamino)-4′-nitrotolane (DEANT) in poly(methyl methacrylate) (PMMA). The decay of the SHG signal from films of DEANT/PMMA was recorded at hydrostatic pressures up to 3060 atm and at different temperatures between 25°C below the glass transition temperature to 35°C above it. The activation volume, ΔV*αβ associated with the long range α-type motion of the polymer remained constant at 213 ± 10 Å3 between Tg - 25°C and Tg + 10°C. At higher temperatures, ΔV*αβ decreased linearly with increasing temperature. The activation volume, ΔV*αβ, associated with short range secondary relaxations was constant over the entire temperature range with a value of 77 ± 10 Å3. The data suggest that above Tg chromophore reorientation is coupled to both the long range and local motions of the polymer; whereas, well below Tg chromophore reorientation is closely coupled to the local relaxations of the polymer. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 901-911, 1998
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 187
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 913-918 
    ISSN: 0887-6266
    Keywords: glass transition ; thermally stimulated currents (TSC) ; relaxation ; PVC ; dielectric ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The thermally stimulated current-thermal sampling (TSC-TS) technique was used to study the broadened glass transition in conventional “atactic” poly(vinyl chloride), PVC. The activated parameters obtained from the TSC-TS data, mainly the apparent activation energy (Ea), characterize the breadth of glass transitions in a very sensitive way. These results are compared with those values of Ea obtained from the literature, using a recently proposed method of analyzing a.c. dielectric constants and their derivatives, over the temperature range of -100-130°C. Both techniques detect weak cooperative glass transition-like relaxations well below the main glass transition of ca. 80°C. As is the case with “atactic” PMMA, the data suggest that compositional heterogeneity related to a small fraction of predominantly isotactic sequences contribute to the broad glass transition extending ca. 60°C below the main glass transition in atactic PVC. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 913-918, 1998
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 188
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 919-930 
    ISSN: 0887-6266
    Keywords: α-relaxation ; cold crystallization ; poly(aryl-ether-ether-ketone) (PEEK) ; poly(ether-imide) (PEI) ; vitrification ; devitrification ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: We have established time-temperature transformation and continuous-heating transformation diagrams for poly(ether-ether-ketone) (PEEK) and PEEK/poly(ether-imide) (PEI) blends, in order to analyze the effects of relaxation control on crystallization. Similar diagrams are widely used in the field of thermosetting resins. Upon crystallization, the glass transition temperature (Tg) of PEEK and PEEK/PEI blends is found to increase significantly. In the case of PEEK, the shift of the α-relaxation is due to the progressive constraining of amorphous regions by nearby crystals. This phenomenon results in the isothermal vitrification of PEEK during its latest crystallization stages for crystallization temperatures near the initial Tg of PEEK. However, vitrification/devitrification effects are found to be of minor importance for anisothermal crystallization, above 0.1°C/min heating rate. In the case of PEEK/PEI blends, amorphous regions are progressively enriched in PEI upon PEEK crystallization. This promotes a shift of the α-relaxation of these regions to higher temperatures, with a consequent vitrification of the material when crystallized below the Tg of PEI. The data obtained for the blends in anisothermal regimes allow one to detect a region in the (temperature/heating rate) plane where crystallization proceeds in the continuously close proximity of the glass transition (dynamic vitrification). These experimental findings are in agreement with simple simulations based on a modified Avrami model coupled with the Fox equation. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 919-930, 1998
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 189
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2225-2235 
    ISSN: 0887-6266
    Keywords: PEEK ; composite ; stability ; nonisothermal ; crystallinity ; melting ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The thermal stability of a short carbon-fiber-reinforced PEEK composite was assessed by thermogravimetry and by a Rheometrics dynamic analyzer. The results indicated that holding for 10 min at 380°C was a suitable melting condition to avoid the thermooxidative degradation under air. After proving that the heating rate of 50°C/min can be used to evaluate the crystallinity, a heating stage was used to prepare nonisothermally crystallized specimens using cooling rates from 1 to 100°C/min after melting at 400°C for 3 or 15 min. The degree of crystallinity and the melting behavior of these specimens were investigated by DSC at a heating rate of 50°C/min. The presence of three or four regions indicated that the upper melting temperature, Tm, changed with the crystallization temperature. The first region with the highest Tm, which corresponded to the cooling rate of 1°C/min, can be associated with the crystallization in regime II. There was a second region where Tm decreased as the amount of crystals formed in regime II decreased with increasing cooling rate from 5 to 20°C/min. The third region, a plateau region, corresponded to regime III condition in which the crystals were imperfect. In the fourth region, the cooling was so fast that crystallization was incomplete during the cooling for the melting condition of 400°C for 15 min. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2225-2235, 1998
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 190
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2237-2246 
    ISSN: 0887-6266
    Keywords: polypyrrole film ; bending ; water vapor sorption ; diffusion ; anisotropic expansion ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Polypyrrole films containing perchlorate were electrochemically synthesized and the bending and recovery motion of the films obtained has been investigated. It was found that the thickness of the film and ambient relative humidity (RH) were crucial to the motion of film: An increase of the film thickness decreased the displacement of the bending but increased the bending stress. On the other hand, an increase of the ambient RH decreased both functions. The motion of film was caused by the difference of expansion on both sides of the film owing to anisotropic sorption of water vapor, which could be expressed by the diffusion-limited bending model. The diffusion coefficients calculated from the bending and recovery motion at 25°C, RH 50% were 12.2 × 10-8 cm2 s-1 and 3.5 × 10-8 cm2 s-1, respectively. The maximum expansion of the film surface calculated from the bending curve was about 0.36%. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2237-2246, 1998
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 191
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2247-2258 
    ISSN: 0887-6266
    Keywords: polyimide ; imidization ; interdiffusion ; PMDA/3,4′-ODA ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Para-, meta-, and mixed isomeric poly(amic ethyl ester) precursors of the polyimide based on pyromellitic dianhydride (PMDA) and 3,4′-oxydianiline (3,4′-ODA) were synthesized. The intrinsic viscosity of each of the isomers was measured in an NMP solution and found to be less than corresponding isomers derived from PMDA and 4,4′-oxydianiline (4,4′-ODA) precursors with comparable molecular weight. The imidization and solvent retention were measured as a function of imidization temperatures, Ti using forward recoil spectrometry (FRES). For samples cast from a single solvent, either N-methyl pyrrolidone (NMP) or dimethyl sulfoxide (DMSO), no difference was observed in the temperature-dependent imidization behavior between the isomers. In all cases the imide fraction f increased as Ti increased, and reached a value of unity, i.e., full conversion at 400°C. At the same Ti, samples cast from DMSO showed a slightly higher f than samples cast from NMP. FRES and time of flight FRES (TOF-FRES) were used to measure the interdiffusion distance, w, of deuterium-labeled tracers into nondeuterated base layers of the polyimide of PMDA/3,4′-ODA treated at various Ti. The primary determinant of w for all isomers was Ti, and the particular isomer used as either the base or the tracer molecule did not seem to affect w. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2247-2258, 1998
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 192
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2259-2265 
    ISSN: 0887-6266
    Keywords: polymer composite ; moisture-absorption ; dielectric loss ; thermal conductivity ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: In the search for new packaging materials for the electrical/electronics industry, three types of polymer composites have been studied. Silicone/boron nitride powders, polyurethane/alumina powders, and polyurethane/carbon fibers have all been synthesized to study the moisture-absorption kinetics, thermal conductivities, and the dielectric loss spectra under various levels of humidity. The water uptake data indicate that water molecules are absorbed not only by the polymer matrix, but also by the interfaces introduced by the fillers. For all materials, the dielectric relaxation spectroscopy shows the presence of a peak in the 175-200 K range, which is largely due to absorbed water. The silicone/boron nitride samples absorbed the least amount of moisture. Incorporating this result with the thermal conductivity data of the three types of polymer composites, it is concluded that silicone polymers embedded with boron nitride can best serve as the coating for the electronic devices that require heat dissipation and moisture resistance, in addition to electrical insulation. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2259-2265, 1998
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 193
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2267-2274 
    ISSN: 0887-6266
    Keywords: poly(ether ether kotone) ; polyimide ; miscibility ; crystallization ; morphology ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Miscibility and crystallization behavior of solution-blended poly(ether ether ketone)/polyimide (PEEK/PI) blends were investigated by using DSC, optical microscopy and SAXS methods. Two kinds of PIs, YS-30 and PEI-E, which consist of the same diamine but different dianhydrides, were used in this work. The experimental results show that blends of PEEK/YS-30 are miscible over the entire composition range, as all the blends of different compositions exhibit a single glass transition temperature. The crystallization of PEEK was hindered by YS-30 in PEEK/YS-30 blends, of which the dominant morphology is interlamellar. On the other hand, blends of PEEK/PEI-E are immiscible, and the effect of PEI-E on the crystallization behavior of PEEK is weak. The crystallinity of PEEK in the isothermally crystallized PEEK/YS-30 blend specimens decreases with the increase in PI content. But the crystallinity of PEEK in the annealed samples almost keeps unchanged and reaches its maximum value, which is more than 50%. The spherulitic texture of the blends depends on both the blend composition and the molecular structure of the PIs used. The more PI added, the more imperfect the crystalline structure of PEEK. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2267-2274, 1998
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 194
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2275-2290 
    ISSN: 0887-6266
    Keywords: associative polymers ; rheology ; thickening ; hydrophobic ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The rheological properties of hydrophobic alkali-soluble associative polymers (HASE) were studied using controlled rate (Mettler LS40) and controlled stress (TA CSL 500) rheometers. The effects of pH and polymer concentrations on the rheological properties of three HASE model polymer systems (i.e., HASE 5141, 5134, and 5142, with a degree of ethoxylation of 2.5, 10, and 40 mol, respectively) and a reference polymer without associative hydrophobes (MAAEA) were examined. As the pH is increased by addition of ammonia to greater than 5-6, the carboxyl groups ionize to carboxylate ions and the polymers become water soluble. The HASE polymers thicken mainly by hydrophobic association. Viscosity can increase by two to three orders of magnitude as pH is raised to 9. The degree of ethoxylation in the macromonomer controls the nature of the hydrophobic association junctions by altering the flexibility and hydrophobicity of the macromonomer. Optimum thickening efficiency is observed in the system with approximately 10 mol of an ethylene-oxide spacer between the polymer backbone and the macromonomer. Viscoelastic study shows that the maximum thickening efficiency also corresponds to the dominant elastic property observed in the system with 10 mol of EO. All the model systems except the control system without hydrophobe exhibit strain thickening of the viscous and elastic components. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2275-2290, 1998
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 195
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2301-2309 
    ISSN: 0887-6266
    Keywords: discrete dynamic compliance spectra ; nonlinear viscoelasticity ; creep ; stress relaxation ; constant strain rate tests ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The present work reports a discrete, stress-dependent dynamic compliance spectra method which may be used to predict the mechanical response of nonlinear viscoelastic polymers during strain-defined processes. The method is based on the observation that the real and complex parts of the discrete dynamic compliance frequency components obtained from creep measurements are smooth, easily fit functions of stress. Comparisons between experimental measurements and model calculations show that the model exhibits excellent quantitative agreement with the basis creep measurements at all experimental stress levels. The model exhibits good quantitative agreement with stress relaxation measurements at moderate levels of applied strain. However, the model underestimates the experimental stress relaxation at an applied strain of 3.26%. The stress relaxation error appears to be a real material effect resulting from the different strain character of creep and stress relaxation tests. The model provides a good quantitative agreement with experimental constant strain rate measurements up to approximately 4% strain, after which the model underestimates the experimental flow stress. This effect is explained by the time dependence of the stress-activated configurational changes necessary for large strains in glassy polymers. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2301-2309, 1998
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 196
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2291-2300 
    ISSN: 0887-6266
    Keywords: poly(hydroxyether of bisphenol A) ; poly(N-vinylpyrrolidone) ; polymer miscibility ; polymer blend ; solid-state (NMR) ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The miscibility of poly(hydroxyether of bisphenol A) (phenoxy) and poly(N-vinyl pyrrolidone) (PVP) was investigated by differential scanning calorimetry (DSC) and high-resolution solid-state nuclear magnetic resonance (NMR) techniques. The DSC studies showed that the phenoxy/PVP blends have a single, composition-dependent glass transition temperature (Tg). The S-shaped Tg-composition curve of the phenoxy/PVP blends was reported, which is indicative of the strong intermolecular hydrogen-bonding interactions. To examine the miscibility of the system at molecular level, high-resolution solid-state 13C nuclear magnetic resonance (NMR) technique was employed. Upon adding phenoxy to system, the chemical shift of carbonyl carbon resonance of PVP was observed to shift downfield by 1.6 ppm in the 13C cross-polarization (CP)/magic angle spinning (MAS) together with the high-power dipolar decoupling (DD) spectra when the concentration of phenoxy is 90 wt %. The observation was responsible for the formation of intermolecular hydrogen bonding. The proton spin-lattice relaxation time T1(H) and the proton spin-lattice relaxation time in the rotating frame T1ρ(H) were measured as a function of the blend composition. The T1(H) result was in good agreement with the thermal analysis, i.e., the blends are completely homogeneous on the scale of 20 ∼ 30 nm. The six results of T1ρ(H) further indicated that the blends were homogeneous on the scale of 40 ∼ 50Å. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2291-2300, 1998
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 197
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2339-2348 
    ISSN: 0887-6266
    Keywords: epoxy ; curing ; generating function ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The systems of diepoxides cured with primary amine in presence of an monoepoxide, monofunctional reactive, under equal stoichiometric ratio has been analyzed by a generating function method. The average degree of polymerization, which changed with time or conversion, and gel point were calculated. The profiles of the degree of polymerization and critical conversion are dependent on the content of and relative reactivities of epoxy groups. For a system with the same ratio, the critical epoxy conversion increases with increasing reactivity. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2339-2348, 1998
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 198
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1617-1624 
    ISSN: 0887-6266
    Keywords: hydrogen-bonded living polymers ; supramolecular ; liquid crystalline polymers ; X-ray scattering ; Fourier transform infrared (FTIR) ; structure ; association chain polymers ; self-assembly ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: A main chain hydrogen-bonded liquid crystalline polymer was formed by melt mixing two complementary components, A and B, which in their individual states do not exhibit liquid crystallinity. The structure of the polymer and the thermal stability of its mesophase were studied using synchrotron radiation SAXS/WAXS/DSC at Daresbury (UK) and by variable temperature Fourier transform infrared. The chain extension, or “polymerization” process, was accelerated at the point when the polymer formed a liquid crystalline phase upon cooling from the isotropic melt. The polymer has an aabb chain structure and forms a smectic layer with a length of the A-B repeating unit. The hydrogen-bonded main chain polymer studied here is a monotropic liquid crystal. Above 150°C, it exhibits kinetic stabilization of its monotropic smectic phase. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1617-1624, 1998
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 199
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1625-1636 
    ISSN: 0887-6266
    Keywords: mechanical behavior ; block copolymers ; affine strain ; SAXS ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Films of a blend of styrene-isoprene triblock copolymer and mineral oil have been simple-cast and roll-cast from a toluene solution. Their microstructure has been analyzed by transmission electron microscopy and small-angle X-ray scattering. The blend formed polystyrene spheres arranged on a body-centered cubic lattice in a matrix composed of polyisoprene and mineral oil, and the samples display large grain sizes and very long-range order. The roll-cast sample exhibits approximately uniaxial symmetry around the rolling direction, which corresponds to the [111] crystallographic direction of the lattice. The glassy spheres act as physical crosslinks of known crosslinking functionality in the soft rubbery matrix. The high-strain deformation mechanism of this oriented cubic material has been studied by a simultaneous tensile-SAXS experiment, where the sample was stretched up to 300% along the [111] direction. By monitoring the position of the (222) and (110) reflections, the deformation of the lattice is shown to be affine with the macroscopic deformation of the sample, and the Poisson's ratio is approximately 0.46. The first zero of the sphere form factor in the SAXS patterns remains also essentially unchanged up to 300% deformation indicating that the reinforcing glassy PS domains retain their spherical shape throughout the deformation. Deformation of the microstructure is totally reversible upon unloading. A model of {hk0} faults is proposed to describe the microstructural changes induced by high-strain deformation. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1625-1636, 1998
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 200
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1637-1645 
    ISSN: 0887-6266
    Keywords: ester interchange reaction ; Monte Carlo method ; copolymerization ; degree of randomness ; miscible polyester blend ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The effects of reaction variables on the degree of randomness in copolymers formed by ester interchange reaction in miscible polyester melt blends were systematically investigated using a Monte Carlo method. Three reaction variables such as the molecular weight difference between two component polymers, the blend ratio, and the reaction ratio of end attack to bond flip, were particularly considered on the cubic lattice model. Ester interchange reactions were assumed to take place during reptational chain motions. It was found that the copolymerization was dependent upon the molecular weight difference and reaction ratio: As the molecular weight difference becomes smaller and when both end attack and bond flip reactions are involved simultaneously, the copolymerization is accelerated. However, the blend ratio does not affect the copolymerization process. This result is discussed in relation to the polymer chain conformation for the ester interchange reaction. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1637-1645, 1998
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...