Overview Statistic: PDF-Downloads (blue) and Frontdoor-Views (gray)

On finding optimal collective variables for complex systems by minimizing the deviation between effective and full dynamics

under review
  • This paper is concerned with collective variables, or reaction coordinates, that map a discrete-in-time Markov process X_n in R^d to a (much) smaller dimension k≪d. We define the effective dynamics under a given collective variable map ξ as the best Markovian representation of X_n under ξ. The novelty of the paper is that it gives strict criteria for selecting optimal collective variables via the properties of the effective dynamics. In particular, we show that the transition density of the effective dynamics of the optimal collective variable solves a relative entropy minimization problem from certain family of densities to the transition density of X_n. We also show that many transfer operator-based data-driven numerical approaches essentially learn quantities of the effective dynamics. Furthermore, we obtain various error estimates for the effective dynamics in approximating dominant timescales / eigenvalues and transition rates of the original process X_n and how optimal collective variables minimize these errors. Our results contribute to the development of theoretical tools for the understanding of complex dynamical systems, e.g. molecular kinetics, on large timescales. These results shed light on the relations among existing data-driven numerical approaches for identifying good collective variables, and they also motivate the development of new methods.

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics - number of accesses to the document
Metadaten
Author:Wei Zhang, Christof Schütte
Document Type:Article
Year of first publication:2024
ArXiv Id:http://arxiv.org/abs/2405.02001
Accept ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.