Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1075-2617
    Keywords: computer modelling ; disulphide bond formation ; Fmoc solid-phase peptide synthesis ; hFSH ; hormone receptor interaction ; N-linked glycopeptide synthesis ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The human follicle-stimulating hormone (hFSH) belongs to a family of glycoprotein hormones which contains two non-identical subunits. This paper describes the design and synthesis of a series of synthetic hFSH constructs as putative ligands for the receptor. The design of these constructs is based on the crystal structure of hCG and molecular modelling using the program package Insight II/Discover. The designed constructs contain peptides ranging from 7 to 48 amino acid residues, disulphide bridges and glycan residues. All the synthetic peptides were synthesized by the stepwise solid-phase method using Fmoc chemistry. Two of the synthetic peptides contain the glycosylated amino acid, Asn(GlcNAc-GlcNAc) and both were prepared using fully protected glycosylated building blocks in the solid-phase peptide synthesis. The disulphide bridges were formed from acetamidomethyl-protected glycopeptides and peptides by a direct deprotection/oxidation method using thallium(III) trifluoroacetate. Mass spectroscopy and amino acid analysis were used for characterization of the synthetic hFSH glycopeptides and peptides. The synthetic hFSH constructs were tested for binding activity on FSH receptor assays but none showed improved binding properties compared with the naturally occurring hormone. It was finally demonstrated that non-related peptides showed non-specific binding at the same level as reported for specific peptides. © 1997 European Peptide Society and John Wiley & Sons, Ltd.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...