Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 39 (1993), S. 1654-1667 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A method of nonhlinear static and dynamic process modeling via recurrent neural networks (RNNs) is studied. An RNN model is a set of coupled nonlinear ordinary differential equations in continuous time domain with nonlinear dynamic node characteristics as well as both feedforward and feedback connections. For such networks, each physical input to a system corresponds to exactly one input to the network. The system's dynamics are captured by the internal structure of the network. The structure of RNN models may be more natural and attractive than that of feedforward neural network models, but computation time for training is longer. Our simulation results show that RNNs can learn both steady-state relationships and process dynamics of continuous and batch, single-input/single-output and multiinput/multioutput systems in a simple and direct manner. Training of RNNs shows only small degradation in the presence of noise in the training data. Thus, RNNs constitute a feasible alternative to layered feedforward back propagation neural networks in steady-state and dynamic process modeling and model-based control.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...