Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 39 (1993), S. 1697-1707 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: In bulk foams, the dependence of bubble size on time can be deduced from a hypothesis of statistical self-similarity and the scaling characteristic of the volume change rate of a foam bubble. If this rate, \documentclass{article}\pagestyle{empty}\begin{document}$ {\dot v} $\end{document}, scales as the mean bubble volume v to the power α, the total surface area of the foam decreases as an inverse of time to the power 1/[3 (1 - α)]. Coarsening of polyhedral foam scales with α = 5/6, when molecular diffusion limits gas transport across lamellae and liquid drainage through Plateau borders limits lamella thinning. Excess liquid is released by disappearing small bubbles and flows into the lamellae and Plateau borders of growing large bubbles. If none of this liquid accumulates in the foam, coarsening is exponential and α = 1. When resistance to mass transfer at the lamella surfaces is the rate-limiting step, polyhedral foam coarsens with α = 1/3. Coarsening of slowly draining, spherical-bubble foam scales with α = 0. The theory is compared with nine measurements of the total surface area of polyhedral and spherical-bubble foams pregenerated from aqueous solutions of sodium lauryl sulfate, hexadecyltrimethylammonium bromide, alpha-olefin sulfonate with alkyl chain lengths from C14 to C16, and two shaving creams. The theory also proves that the collapse of a two-dimensional, polygonal foam is self-similar and scales with α = l. In all cases, our theory agrees well with experiment and numerical calculations.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...