Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: 1H- and 31P-nmr spectroscopy have been used to investigate the self-association of M2(5′-CMP) [M = Li+, Na+, K+, Rb+, or (CH3)4 N+; 5′-CMP = cytidine 5′-monophosphate], the self-association of Li2(5′-GMP) (5′-GMP = guanosine 5′-monophosphate), and the heteroassociation of 5′-GMP and 5′-CMP (1 : 1 mole ratio) in aqueous solution as a function of the nature of the monovalent cation. Proton spectral differences for the different 5′-CMP salts exhibit a cation-size dependence and have been ascribed to a change in the stacking geometry. An average stacking association constant of 0.63 ± 0.24M-1 at 1°C, consistent with the weak stacking interactions of the cytosine bases, was determined for the 5′-CMP salts. Heteroassociation of 5′-GMP and 5′-CMP follows the reverse of the cation order for the formation of ordered aggregates of 5′-GMP. Heteroassociation occurs in the presence of Li+, Na+, and Rb+ ions, but only self-association occurs for the K+ nucleotides. Li2(5′-GMP), which does not form ordered species, self-associates to form disordered base stacks with a stacking constant of 1.63 ± 0.11M-1 at 1°C.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...