Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 38 (1996), S. 13-29 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: An artificial neural network has been developed for the recognition and prediction of transmembrane regions in the amino acid sequences of human integral membrane proteins. It provides an additional prediction method besides the common hydrophobicity analysis by statistical means. Membrane/nonmembrane transition regions are predicted with 92% accuracy in both training and independent test data. The method used for the development of the neural filter is the algorithm of structure evolution. It subjects both the architecture and parameters of the system to a systematical optimization process and carries out local search in the respective structure and parameter spaces. The training technique of incomplete induction as part of the structure evolution provides for a comparatively general solution of the problem that is described by input-output relations only. Seven physicochemical side-chain properties were used to encode the amino acid sequences. It was found that geometric parameters like side-chain volume, bulkiness, or surface area are of minor importance. The properties polarity, refractivity, and hydrophobicity, however, turned out to support feature extraction. It is concluded that membrane transition regions in proteins are encoded in sequences as a characteristic feature based on the respective side-chain properties. The method of structure evolution is described in detail for this particular application and suggestions for further development of amino acid sequence filters are made. © 1996 John Wiley & Sons, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...