Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 26 (1984), S. 1364-1371 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Flavin adenine dinucleotide (FAD) and glucose oxidase were adsorbed on medium porosity spectroscopic graphite (SG) and on low porosity glassy carbon (GC) with retention of electrochemical activity, as measured by cyclic and differential pulse voltammetry. Adsorption on the SG was very strong, while that on GC was much weaker. Enzyme activity could be partially restored by the addition of the apoenzyme of glucose oxidase to the SG-adsorbed FAD preparation. The holoenzyme of glucose oxidase also was adsorbed on SG with retention of enzyme activity. The mechanism for the reconstitution of active enzyme from adsorbed FAD and soluble apoenzyme is not clear. The data suggest that the reconstituted enzyme stays adsorbed to the SG, but it is not clear whether the FAD or protein portions (or both) are adsorbed after reconstitution. The data also indicate that substrate mass transfer resistance may be important with the reconstituted-adsorbed enzyme.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...