Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 27 (1985), S. 280-285 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The inhibitory effect of ethanol on yeast growth and fermentation has been studied for the strain Saccharomyces cerevisiae ATCC No. 4126 under anaerobic batch conditions. The results obtained reveal that there is no striking difference between the response of growth and ethanol fermentation. Two kinetic models are also proposed to describe the kinetic pattern of ethanol inhibition on the specific rates of growth and ethanol fermentation: \documentclass{article}\pagestyle{empty}\begin{document}$$\begin{array}{*{20}c} {\frac{{\mu _i }}{{\mu _0 }} = 1{\rm } - {\rm }\left( {\frac{P}{{P_m }}} \right)^\alpha } \hfill & {\left( {{\rm for}\ {\rm growth}} \right)} \hfill \\ {\frac{{\nu _i }}{{\nu _0 }} = 1{\rm } - {\rm }\left( {\frac{P}{{P'_m }}} \right)^\beta } \hfill & {\left( {{\rm for}\ {\rm ethanol}\ {\rm production}} \right)} \hfill \\ \end{array}$$\end{document} The maximum allowable ethanol concentration above which cells do not grow was predicted to be 112 g/L. The ethanol-producing capability of the cells was completely inhibited at 115 g/L ethanol. The proposed models appear to accurately represent the experimental data obtained in this study and the literature data.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...