Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 30 (1987), S. 717-723 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A two-parameter deactivation model is proposed to describe the kinetics of activity stabilization for some enzymes. The single-step unimolecular mechanism exhibits non-first-order deactivation kinetics since the final enzyme state, E1 is not completely inactivated. The usefulness of the model is demonstrated by applying it to the inactivation of different enzymes. The influence of the concentration of active ester, ionic strength, and pH on the model parameters is examined during the inactivation of electric eel acetylcholinesterase.25 In general, inactivators would decrease the level of activity stabilization, α1, and increase the first-order inactivation rate constant, k1. The effect of protecting agents would be to increase α1 and to decrease k1.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...