Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 34 (1989), S. 153-159 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The low substrate specificity of alcohol oxidase from Pichia pastoris makes this enzyme system of potential biotechnological interest. Whole cells of Pichia pastoris are able to oxidize benzyl alcohol to benzaldehyde in aqueous reaction media. The low water solubility of the reactant and product of this bioconversion, combined with the ability of both to strongly inhibit the reaction, favor the use of nonaqueous reaction fluids. Purified alcohol oxidase was shown to function in a number of 2-phase reaction systems of varied aqueous to organic phase ratios (0.01-0.05 v/v). The apparent Vmax and Km were 5.26 g/Lh and 7.41 g/L respectively, for the oxidation of benzyl alcohol to benzaldehyde in hexane containing 3% aqueous phase. The volume of the aqueous phase had a strong effect on the reaction, with an aqueous: organic ratio of 3-5% found to be optimum. The enzyme could be firmly immobilized on DEAE-Biogel (Biorad) to enhance stability and biocatalyst recovery.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...