Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 34 (1989), S. 694-704 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Near-homogeneous forms of glucoamylases I and II, previously purified from an industrial Aspergillus niger preparation, were incubated with D-glucose at a number of temperatures and pH values. Kinetics and equilibria of the formation of α,β-trehalose, kojibiose, nigerose, maltose, isomaltose, panose, and isomaltotriose, which with isomaltotetraose were the only products formed, were determined. There was no difference in the abilities of GA I and GA II to form these products. Activation energies for the formation of maltose and panose were lower than those of the other Oligosaccharides. Relative rates of oligosaccharide production based on glucoamylase hydrolytic activity did not vary significantly between pH 3.5 and 4.5 but were lower at pH 5.5. Maltose was formed much faster than any other product. Equilibrium concentrations at higher dissolved solids concentrations decreased in the order isomaltose, isomaltotriose, kojibiose, nigerose, maltose, α, β-Mrehalose, panose, and isomaltotetraose. They were not appreciably affected by changes in temperature or pH. A kinetic model based on adsorption of D-glucose and the seven di- and trisaccharides by the first three glucoamylase subsites was formulated. Oligosaccharide formation was simulated with the model, using equilibrium data gathered for this article and subsite binding energies and kinetic parameters for oligosaccharide hydrolysis measured earlier. Agreement of simulated and actual oligosaccharide formation data through the course of the reaction was excellent except at very high solid concentrations.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...