Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Supramolecular Structure 7 (1977), S. 515-530 
    ISSN: 0091-7419
    Keywords: breast ; prostate ; carcinoma ; glycoproteins ; organ culture ; Life Sciences ; Molecular Cell Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We demonstrate that a technique is available to investigate glycoprotein synthesis in organ cultures of human breast and prostate surgical specimens where the 3-dimensional epithelial cell arrangement remains intact. Malignant breast and prostate epithelium maintained their capacity to synthesize glycoproteins for at least 3 days as followed by the incorporation of [3H] glucosamine into macromolecules. Over 70% of incorporation was by malignant cells as judged by autoradiography. Labeled glycoproteins were released into glandular lumina and consequently into the culture fluid. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed predominantly one group of macromolecules released with an apparent molecular weight of 48,000 ± 6,000 daltons. This glycoprotein was found in all of the breast specimens studied, which included 1 medullary, 1 infiltrating lobular, and 8 infiltrating duct carcinomas. The pattern was independent of the availability of estrogen receptors. A similar glycoprotein was also observed in the culture media from a Grade I and a Grade II well-differentiated infiltrating prostate carcinoma. Incorporation was below the level of detection in 4 of 6 cases of benign prostatic hyperplasia. A more complex pattern of labeled glycoproteins was found in the media of a Grade II and a Grade III poorly-differentiated prostate carcinoma. The established human mammary carcinoma cell line MCF-7 synthesized and released a similar 48,000 molecular weight glycoprotein but additional components with larger molecular weights were also released. An intriguing interpretation that 3-dimensional tissue integrity restricts some glycorprotein synthesis is discussed. Cells grown in 2-dimensional monolayers could escape from such a topographic restriction and express additional families of glycoproteins.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...