Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Bioelectromagnetics 8 (1987), S. 243-258 
    ISSN: 0197-8462
    Keywords: chronic exposure ; teratology ; reproduction ; growth ; embryotoxicity ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Physics
    Notes: Previous studies have raised the possibility of reproductive and developmental changes in miniature swine chronically exposed to a strong 60-Hz electric field. Two replicate experiments on rats were performed to determine if similar changes could be detected in animals exposed under a comparable regime, which was based on average, induced-current densities and on the chronology of reproductive development, as dosimetrically and biologically scaled. Beginning at three months of age, female rats of the F0 generation and their subsequent offspring were chronically exposed to a 60-Hz electric field (100 kV/ m unperturbed) for 19 h/day for the duration of experimentation.After four weeks of exposure, F0 female rats were mated to unexposed male rats during the field-off period. No significant developmental effects were detected in their litters, confirming our previous results with swine and rats. The F0 females were mated for a second time at 7.2 months of age, and the fetuses were evaluated shortly before term. In the first experiments, the incidence of intrauterine mortality was significantly less in exposed than in sham-exposed litters, and there was a tendency (P = 0.12) for an increased incidence of malformed fetuses in exposed litters. Neither end point was significantly affected in the second experiment.Copulatory behavior of the female F1 offspring, which were bred at three months of age, was not affected in either experiment. There was a statistically significant decrease in the fertility of F1 exposed females and a significant increase in the fraction of exposed litters with malformed fetuses in the first experiment; both end points were essentially the same in the sham and exposed groups of the second experiment.That the significant effects detected in the first experiment were not seen in the second may be attributed to random or biological variation. Alternatively, the finding may indicate that the response threshold for induction of malformations lies near 100 kV/m.
    Additional Material: 7 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...