Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 25 (1996), S. 486-500 
    ISSN: 0887-3585
    Keywords: protein-DNA interaction ; DNA bending ; helix-turn-helix ; Poisson-Boltzmann electrostatics ; docking ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: A method is presented to predict overall conformations of protein-DNA complexes on the basis of the known three-dimensional structures of the proteins. The method is restricted to proteins with a common twofold symmetry axis, which show only minor conformational changes upon binding to DNA. The method uses a numerical finite difference solution of the linearized Poisson-Boltzmann equation and subsequent energy minimization cycles. Structural parameters - the rotation angle of the DNA relative to the protein around the common symmetry axis, the protein-DNA distance, and intermolecular hydrogen-bonding contacts - are presented for two test cases, DNA bound to CAP (catabolite gene activator protein) and to the Cro-repressor of bacteriophage 434. The DNA curvature in the starting model of the docking procedure was chosen as a smoothed approximation of the conformation found in the X-ray structures of these complexes. The method is further used to predict the unknown structure of the complex between the factor for inversion stimulation (FIS) and DNA, which is bent upon binding to FIS. In contrast to the test cases, the unknown curvature of the starting model is derived from a calibration of electrostatic precalculations for different proteins according to crystallographically observed DNA bending. The results of the modeling are in good accordance with the experimentally observed overall structure of protein-DNA complexes for the two test cases; for FIS, they correspond to several of the experimentally proposed protein-DNA contacts. © 1996 Wiley-Liss, Inc.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...