Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Particle and Particle Systems Characterization 13 (1996), S. 280-286 
    ISSN: 0934-0866
    Keywords: Chemistry ; Industrial Chemistry and Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Within the past 20 years, particle size analysis with laser diffraction (LD) has been subject to rapid development, extending the size range stepwise from 1-200 μm to about 0.1-3500 μm. The limits of LD are discussed in terms of light sources, the influence of the beam diameter, special Fourier optics and a new detector design.It is shown that the size range is not only restricted by the wavelength of the laser and the transmission limits of the medium. Its extension is mainly related to improvements in the measurement of the angular intensity distribution. Influences from stability and flow dominate on the coarse side of the measuring range. On the fine side, the spatial extension of aerosols and the resulting demand for extended working distances can be covered only in a parallel laser beam. Extended Fourier optics in combination with an adapatable beam expansion technique and a detector with virtual borders between semicircular elements overcome the existing limits and extend the size range to a lower limit of about 0.05 μm and an upper limit above 10 mm.The sensititivity limit of LD is approaching that of single particle counting techniques. For medical spray and inhaler applications, a 0.1% optical concentration can be converted to particle size distributions even for time-resolved analyses with sample intervals of a few milliseconds.The reproducibility of the sensor, with a standard deviation typically much less than 0.5%, is no longer the limiting factor. The reproducibility of the results is mainly dominated by the reproducibility of sampling, sample splitting, dispersion and the contamination of the optical path. The latter can be improved by the control of flow, especially for in-line and inhaler applications.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...