Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Brookfield, Conn. : Wiley-Blackwell
    Polymer Composites 9 (1988), S. 229-236 
    ISSN: 0272-8397
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: High-impact polystyrene (HIPS) constitutes a mechanically attractive composite, consisting of a glassy matrix and a rubberlike particle phase (gel phase). Dynamic mechanical spectroscopy was performed for the polystyrene matrix for three different types of HIPS as well as for the concentrated gel-phase material, at the vicinity of the respective glass-transition temperatures (Tg). An approximate estimation of the gel-phase modulus was attempted by using known mechanical models. A comparison with experiments was also made. The modulus of the composite was found to be lower than the theoretical lower bound for particulate composites. This was attributed to a separate phase between gel particles and the matrix. A diffusion-type variation of the modulus of this mesophase layer was estimated, and a correlation between calculated fitting parametric exponents and impact behavior of HIPS was found. Moreover, the Tgs of the materials under investigation were also measured with two independent methods. It was found that all types of HIPS presented higher Tgs than the pure matrix by 5 to 10°C with the highest Tg found being that of the gel-enriched material. The shift of Tgs to higher temperatures was attributed to an eventual increase of the effective cross-link density of the matrix because of grafting.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...