Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 17 (1977), S. 311-316 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: A series of starch graft copolymers and one cellulose graft copolymer were prepared containing 40-50 percent synthetic polymer. The monomers used (styrene, methyl methacrylate, methyl acrylate, and butyl acrylate) were chosen to give grafted synthetic polymers with varying glass transition temperatures (Tg). These graft copolymers were extruded, in the absence of any added thermoplastic homopolymer, to give strong, continuous polysaccharide-filled plastics which are biodegradable and which exhibit little or no die swell. Properties of plastics varied with the Tg of the thermoplastic portion. Starch-g-polystyrene and starch-g-poly(methyl methacrylate) were hard and brittle, while graft copolymers prepared from methyl and butyl acrylate were more flexible and leathery. The graft Uopolymers with lower Tg grafts required less torque and could be extruded at lower temperatures. In the methyl acrylate series, a graft copolymer prepared from gelatinized starch was more easily extruded than one prepared from granular starch, and addition of water produced a water-filled extrudate of excellent quality. The surprising feature of these results is that the matrix polymers, starch and cellulose, are rigid, nonsoftening materials. Grafting of a thermoplastic polymer to these matrix polymers would not be expected to give an extrudable product. The results are explained as powder flow followed by fusion or sintering of the graft polymers under the temperature and pressure conditions in the die.
    Additional Material: 3 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...