Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 23 (1983), S. 618-626 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Particular rheology compositions (PRC) so far observed for blends of polyolefins are confirmed with composition dependence of melt elasticity and viscosity functions for polypropylene/rubbers and blends of other commercial polymers. Particular morphology at PRC was indirectly ascertained from the composition dependence of specific volume, vT-compositions for which the maximum vT observed are those of minimum viscoelasticity. Direct evidence from scanning electron microscopy (SEM) indicates that the disperse morphology undergoes distinct change at PRC: from uniform into bimodal, with coarser core. Rubber rich mixtures display stratified texture confirming that the melt elasticity ratio (Van Oene's) criterion for disperse/stratified morphology transition is valid in case of polypropylene/rubber blends. For a set of polymers of given melt elasticity ratios and at a composition ratio, static and rotational distributive mixers generate polyblends differing significantly in the melt rheology - morphology interaction.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...