Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 24 (1984), S. 833-842 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: In order to obtain a more complete understanding of failure mechanisms in glassy polymers subjected to fatigue loading conditions, craze zone dimensions (i.e., length and thickness at the crack tip) were measured simultaneously with fatigue crack propagation data in poly(methyl methacrylate) (PMMA) by optical interferometry. Since the craze shape was observed to assume a wedge-shaped configuration similar to the one described by the Dugdale plastic strip model, crazing stresses were inferred on the basis of this model. When varying the stress ratio (R = minimum load/maximum load) of the applied cyclic load in the range from 0.1 to 0.7, it was found that both craze length and craze thickness are essentially independent of the R-ratio and can be correlated in terms of the maximum stress intensity factor only. On the other hand, significant variations in craze dimensions with test frequency occurred over the range from 0.1 to 250 Hz. The results are discussed in terms of the viscoelastic nature of the material and a competition between the effects of strain rate and hysteretic heating.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...