Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 26 (1986), S. 274-284 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The effect of ductility on fatigue behavior was studied using two DGEBA-based (diglycidyl ether of bisphenol A) epoxies: a ductile Epon 815/Versamid 140 and a brittle Epon 828/Epon Z. Failure modes were different although normalized stress-life relations were similar for both resins. Two competing failure mechanisms were identified: viscoelastic creep, and nucleation and coalescence into a main crack of microcracks. No signs of crazing or fibrillation were detected. The plastic elongation during fatigue was larger in Epon 815/Versamid 140. Fracture sources showed cracked material surrounded by a region of stable growth of the main crack. In the brittle Epon 828/Epon Z cracked material was scarce and the crack initiation region was clean, especially at high stress levels. Discontinuous crack growth bands and striations were seen in the stable crack growth regions. During unstable propagation the crack advanced at different levels joined by deep cleavage steps. Branching of the main crack occurred only in the brittle resin at the final stage of propagation.
    Additional Material: 19 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...