Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 35 (1995), S. 1022-1030 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: A dynamic simulation method has been developed of the fracture process of a fiber in a flow field using the particle simulation method proposed i a previous paper. The fiber is modeled with bonded spheres as a fiber model. The flexibility of the fiber model is altered by changing three parameters of the stretching, bending, and twisting constants between adjacent spheres. The stress induced in each bond of the fiber model as a result of deformation is formulated using displacement of the bodn distanc, bond angle, and torsion angle fr each pair of spheres. After deformation, the fiber model fractures at the bond at which the stress surpasses the strength of the fiber. The motion of the fiber model in a flow field is determined by solving the translational and rotational motion equations for individual spheres under the hydrodynamic force and torque exerted on them. The correctness of the method and formulation was verified by comparing the simulated deflection curve of a cantilever beam (with a concentrated load at the end) with the theoretical curve. Good agreement was found in both the deflection and slope of the beam. The fracture process of a fiber after bending deformation in a two-dimensional siimple shear flow was simulated under assumptions of an infinitely dilute system, no hydrodynamic interaction, and a low Reynolds number of a particle. The calculated critical conditions of the flow field for fiber fracture were compared with Forgacs and Mason's theoretical ones. Simulated values of the fracture condition of the fluid shear stress related to the Young's modulus of a fiber agree with theoretical ones over an aspect ratio of 15.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...