Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Journal of Morphology 146 (1975), S. 265-306 
    ISSN: 0362-2525
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: This paper describes the different regions of the Malpighian tubules and the associated structures (ampulla, midgut, ileum) in the cockroach, Periplaneta americana. There are about 150 tubules in each insect. Each tubule consists of at least three parts. The short distal region is thinner than the other parts and is highly contractile. The middle region comprises most of the tubule length and is composed of primary and stellate cells. Primary cells contain numerous refractile mineral concretions, while stellate cells have smaller nuclei, fewer organelles, simpler brush border, and numerous multivesicular bodies. Symbiont protozoa are sometimes present within the lumen of the middle region near where it opens into the proximal region of the tubule. The latter is a short region that drains the tubular fluid into one of the six ampullae. These are contractile diverticula of the intestine located at the midgut-hindgut junction. The ampulla is highly contractile, and consists of a layer of epithelial cells surrounding a cavity that opens into the gut via a narrow slit lined by cells of unusual morphology. The proximal region of the tubule and the ampulla resemble the midgut in that they have similar microvilli, basal infolds, and distribution of mitochondria. This suggests an endodermal origin and reabsorptive function for the proximal region of the tubule and for the ampulla. A number of inclusions found within the tubule cells are described, including peroxisomes and modified mitochondria. Current theories of fluid transport are evaluated with regard to physiological and morphological characteristics of Malpighian tubules. The possible role of long narrow channels such as those between microvilli and within basal folds is considered, as is the mechanism by which these structures are formed and maintained. Also discussed is the role of peroxisomes and symbionts in the excretory process.
    Additional Material: 39 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...