Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Journal of Morphology 213 (1992), S. 33-45 
    ISSN: 0362-2525
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Autogeneic bone marrow was implanted into an artificially created cavity in a segment of rat sciatic nerve, after removal of nerve fascicles, without damaging the epineurium or surrounding microcirculation. Under these conditions, the bone marrow induces capillary growth and forms granulation tissue from surrounding tissues, the behavior of pericytes being studied in the preformed (preexisting) postcapillary venules of the latter. Beginning 20 h after bone marrow implantation, the pericytes of the preexisting postcapillary venules hypertrophy, with shortening of their processes, prominent nucleoli, dispersal of ribosomes into their free form, fragmentation of basal lamina, and increased DNA synthesis. The number of contact surfaces between pericytes and endothelium is noticeably lower than in controls. Many pericytes are in mitosis. Cells with a shape transitional between pericytes and interstitial fibroblast-like cells appear. In some cases, Monastral Blue (MB) was used as a marker of the cells in preexisting venule walls of the graft bed. In the earlier stages of the experiment, the MB labelling is restricted to the cytoplasm of pericytes and endothelial cells of postcapillary venules, and to the macrophages that occur in the space between pericytes and endothelium. Furthermore, the marker continues to be observed, at a later stage, in some of the following cells: pericytes and endothelial cells of the newly formed vessels, macrophages migrating into the interstitium, transitional cells between pericytes and fibroblasts, and typical fibroblasts of the granulation tissue. The present study provides greater evidence that preformed microvasculature pericytes are substantially activated during postnatal angiogenesis and granulation tissue formation, suggesting that they may contribute to the origin of new pericytes and fibroblasts. © 1992 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...