Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: When human granulocytes that have been primed with recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSFrh) are activated by ligands that stimulate the respiratory burst, the amount of superoxide anion (O-2) they generate is significantly increased. We have found that the accelerated rate of O-2 release occurring under these conditions is accompanied by an antecedent increase in membrane depolarization. We examined the nature of the enhancement of membrane depolarization in GM-CSFrh-primed granulocytes and investigated its relationship to the increase in O-2 generation by N-formyl methionylleucylphenylalanine (fMLP)-activated granulocytes. We found that augmented depolarization could not be accounted for by a change in the resting membrane potential induced by the growth factor and was still present after either blocking passive transmembrane Na+ movement with dimethylamiloride or by increasing the membrane's permeability to K+ with valinornycin. When their ability to depolarize was virtually eliminated by dissipating the transmembrane K+ gradient, GM-CSFrh-pretreated cells continued to generate more O-2 after fMLP than did control cells. These results indicate that augmentation of the granulocyte's ability to generate O-2 anions, which is induced by priming with GM-CSFrh, is independent both of the resting transmembrane potential and of alterations in the extent of membrane potential change induced by stimuli such as fMLP.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...