Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 151 (1992), S. 215-227 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Human bone cells grown in culture, representative of a preosteoblastic stage of maturation, produce an extracellular matrix composed of collagen several noncollagenous glycoproteins, hyaluronan, and four distinct proteoglycans (PGs). The influence of donor age on the levels of expression of these molecules in vitro has not been well characterized. In this study, human bone cells derived from sources ranging from fetal to 60-year-old donors were grown in culture, radiolabeled for 24 h, and the amount of incorporation of [35S]sulfate into PGs, [3H]glucosamine into hyaluronan, [3H]leucine/proline into osteonectin, and [3H]proline into collagen was determined. Cell proliferation was most rapid in fetal-derived bone cells and decreased with increasing age. Total protein and PG synthesis also decreased with increasing age, falling to 1/3 and 1/4, respectively, of fetal levels after age 30. A large chondroitin sulfate PG (Mr ∼ 600,000 Da) was the major fetal PG and its levels were highly correlated with cellular proliferation. [3H]Collagen and [35S]decorin levels increased with the increasing age of the donor, reached a maximum in puberty-derived cells, and decreased to 1/3 maximal levels after age 20. The heparan sulfate PG (Mr ∼ 400,000 Da) exhibited steadystate levels regardless of donor age. [3H]Osteonectin and [35S]biglycan levels were high in fetal-derived cells and in cells derived from pubescent donors. The percentage of collagen and four proteoglycans associated with the cell layer pool changed with donor age. All fetal-derived PG core proteins possessed more N- and O-linked oligosaccharides than newborn or adult derived PGs. © 1992 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...