Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Hoboken, NJ [u.a.] : Wiley-Blackwell
    Journal of Orthopaedic Research 5 (1987), S. 128-132 
    ISSN: 0736-0266
    Keywords: Growth plate ; Protease ; Proteoglycan ; Electron microscopy ; Life and Medical Sciences
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: To assess the effect of intracellular growth plate chondrocyte enzymes on proteoglycan structure, we examined enzyme-treated articular cartilage proteoglycans and untreated articular cartilage proteoglycans with the electron microscopic monolayer technique. The untreated proteoglycan monomers ranged in length from less than 20 nm to more than 700 nm, with a mean length of 224.5 + 101.6 nm in one experiment and 224.6 + 95.7 nm in a second experiment. Incubation with growth plate enzymes reduced proteoglycan monomers to fragments with lengths that varied from less than 5 nm to 143 nm, increased the variability in monomer length, and destroyed proteoglycan aggregates. The enzyme treated monomers had an average length of 29.5 + 17.9 nm in one experiment and 35.2 + 17.0 nm in a second experiment. The smallest common fragments were 15 nm long and would be expected to contain about 15 glycosaminoglycan chains. This experiment demonstrates that enzymes extracted from growth plate chondrocytes can degrade the chondroitin sulfate-rich region of proteoglycan monomer core proteins, produce a range of monomer fragment sizes with less than 20% of the fragments shorter than 5 nm or longer than 100 nm, increase the variability in monomer length, and degrade proteoglycan aggregates.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...