Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0018-019X
    Keywords: Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The oxidative transformation of (+)-aristoteline ((+)-5) into its metabolites, the recently synthesized indole alkaloids (-)-serratoline ((-)-6), (+)-aristotelone ((+)-2), and (-)-alloaristoteline ((-)-22), was investigated in more detail. It was demonstrated that the diastereoface selectivity of the reaction of (+)-5 with 3-chloroperbenzoic acid can be altered by variation of the solvent as well as by addition of CF3COOH. The chemoselectivity of the 1,2-rearrangement of the intermediate 3H-indol-3-ol derivatives could be controlled as follows: treatment of 3H-indol-3-ols with aqueous polyphosphoric acid led to the pseudoindoxyl ( = 1,2-dihydro-3H-indol-3-one) derivatives, whereas an analogous treatment of the corresponding O-benzoates furnished exclusively the corresponding, constitutionally isomeric 2-oxindole ( = 1,3-dihydro-2H-indol-2-one) products. Exploitation of these and related findings led to efficient total syntheses of the Aristotelia alkaloid (-)-tasmanine ((-)-1) and of the corresponding unnatural epimer (+)-12, as well as of the two pseudoindoxyls (+)-aristotelone ((+)-2) and (-)-2-epiaristotelone ((-)-11). All these transformations were carried out with synthetic (+)-aristoteline ((+)-5) as the single indole alkaloid precursor.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...