Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 30 (1986), S. 213-224 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The reaction pathway of fulminic acid (HCNO) and acetonitrile oxide (CH3CNO) with methanol as a nucleophile (RCNO + CH3OH → RC(OCH3)=NOH) and the formation of H-bonded complex with methanol have been studied using the MNDO method. MNDO-SCF calculations were performed with complete geometry optimization using the Davidon-Fletcher-Powell method. The reaction pathways were studied by varying all the bond lengths, the bond angles and the twist angles, using the distance C3—O2(R) between the carbon of the 1,3-dipoles and the oxygen of the methanol molecule as the reaction coordinate. The reaction is exothermic and proceeds in two steps. The first step is the formation of a five-centered hydrogen-bonded complex (INT) and is the rate-determining step of the reaction. The second step involves the rearrangement of the H-bonded complex to the product, and this step requires a very small amount of activation energy. Thus, there is an intermediate on the reaction pathway, and therefore, the reaction is stepwise. Acetonitrile oxide is less reactive (activation energy 34.59 kcal/mol) relative to fulminic acid (activation energy 28.91 kcal/mol).
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...