Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: We developed a theoretical method for studying the aromatic stability of large molecules, molecules having a dozen and more fused benzene rings. Such molecules have so far often been outside the domain of theoretical studies. Combining the statistical approach and a particular graph theoretical analysis, it is possible to derive the expressions for molecular resonance energy for molecules of any size. The basis of the method is enumeration of conjugated circuits in random Kekulé valence structures. The method has been applied to evaluation of the resonance energies of conjugated hydrocarbons having about a dozen fused benzene rings. The approach consists of (1) construction of random Kekulé valence structures, (2) enumeration of conjugated circuits within the generated random valence structures, and (3) application of standard statistical analysis to a sufficiently large sample of structures. The construction of random valence forms is nontrivial, and some problems in generating random structures are discussed. The random Kekulé valence structures allow one not only to obtain the expression for molecular resonance energies (RE) and numerical estimates for RE, but also they provide the basis for discussion of local molecular features, such as ring characterization and Pauling bond orders.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...