Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 44 (1992), S. 141-163 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Semiempirical methods were utilized in the computation of a fully optimized structure of bilirubin. Bond lengths and bond angles obtained using either AM1 or PM3 calculations showed excellent agreement with those obtained by X-ray diffraction. This indicated that molecular orbital methods satisfactory reproduced the complex conjugation found in bilirubin. Dihedral angles of the crucial “hinge” and the dihedral angles of the propionic acid side chains agreed well with those found by X-ray diffraction. Calculated hydrogen- bond parameters (distance and angles) showed substantial differences from experimental values, probably due to inherent weakness in the parameterization of the molecular orbital techniques. Conformational studies were carried out using AM1 by rotating the C9—C10 bond in 5° increments showed that the most stable structure exhibited a minimum at about 125° and exhibited a structure similar to those postulated from X-ray and NMR experiments. The hydrogen bonds showed remarkable tenacity during rotation of the C9—C10 bond and resisted breaking until the molecule was under extreme strain. © 1992 John Wiley & Sons, Inc.
    Additional Material: 17 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...