Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 44 (1992), S. 225-253 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The reverse transcriptase (RT) of human immunodeficiency virus type-1 (HIV-1) is still a pivotal target for anti-AIDS therapy research. We examine in this paper “classical” RT inhibitors, the chain-terminating deoxynucleosides, as well as recently developed synthetic drugs. Comparison of their structures and electronic properties allowed us to speculate on a mechanism of inhibition of RT with three different recognition schemes. The first one consists of in-plane H-bond interactions of the CONH binding site. The second one is related to out-of-plane interactions and seems to be favored by charge delocalization. It is also observed that a completely different chemical, BI-RG-587, has a binding site exhibiting remarkable similarity to those of the dideoxynucleosides. Also important is the observation that all drugs that we have examined present two nearly perpendicular planes, one of which is likely to be associated to hydrophobic interactions. This picture provides a simple basis for discussing the antiretroviral activity of the most potent inhibitors of HIV-1 RT. It also reveals that ddl is a poor inhibitor (relative to AZT) and ddU is inactive against HIV-1 replication for completely different reasons. The low-energy conformation of ddl gives rise to unfavorable van der Waals contacts. On the other hand, ddU cannot assume a conformation suitable for phosphorylation of its hydroxyl moiety. All these features are discussed in detail. © 1992 John Wiley & Sons, Inc.
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...