Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 12 (1991), S. 220-230 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: An algorithm for a detailed 3-D characterization of the shapes of molecular charge distributions is implemented, tested and applied for a family of AB2 molecules. The characterization is performed by computing a number of topological invariants (“shape groups”) associated with a continuum of molecular surfaces: the complete family of all electronic isodensity contours for the given molecules. These shape groups (the homology groups of truncated surfaces derived from isodensity contours) depend continuously on two parameters: a density value defining the density contour, and a reference curvature value, to which the local curvatures of the isodensity contours are compared. The electronic charge distribution is modeled by means of Gaussian-type functions. The method employs an explicit form of the charge density function in order to compute the curvature properties for the molecular surfaces analytically, from which the shape groups are derived by the algorithm. No visual inspection is required for the characterization and comparison of shapes of molecular charge densities, as these are done algorithmically by the computer. However, visual inspection of the results of the shape analysis is a possible option. For a given molecule, in a given nuclear configuration, the technique provides a two-dimensional shape map, displaying the distribution of shape groups as a function of the local curvature and the level set value (the value of the charge density at the contour). The computer program GSHAPE performs the analysis of shape maps automatically. This feature makes it potentially useful in the context of computer-aided drug design, where unbiased, automated shape characterization methods are valuable tools. As examples, several two-dimensional shape maps for simple systems are discussed. The changes induced in these maps by a change in the nuclear geometry, as well as by the changes of the nuclear charge, are also analyzed. The method is applicable to large biomolecules of interest if charge density information is available.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...