Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 13 (1992), S. 148-154 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: The performance of Atomic Natural Orbital (ANO) basis sets for calculations involving nonempirical core pseudopotentials has been studied by comparing the results for atomic and molecular nitrogen obtained using contracted ANO basis sets with those obtained using both the primitive set and a segmented one. The primitive set has been optimized at the SCF level for atomic N treated as a five-electron pseudo-atom, and consists of 7s and 7p primitive GTOs supplemented by 2d and 1f GTOs optimized at the CI level. From this primitive set three contracted [3s 3p 2d 1f] sets have been obtained. The first one has been derived from the ANOs of the neutral atom, the second has been obtained from an averaged density matrix and the third one is a segmented set. For the atom, the segmented set gives a zero contraction error at the SCF level as it must be in valence-only calculations. The ANO basis sets show some small contraction error at the SCF level but perform better in CI calculations. However, for the diatomic N2 molecule the ANO basis sets exhibit a rather large contraction error in the calculated SCF energy. A detailed analysis of the origin of this error is reported, which shows that the conventional strategy used to derive ANO basis sets does not work very well when pseudopotentials are involved.
    Additional Material: 6 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...