Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 13 (1992), S. 997-1003 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: The closely related Cs (1) and C2v (3) structures of CH5+ have been reinvestigated at many ab initio levels using MP2/6-31G** and MP2/6-311 + + G(2df, 2pd) geometries. The largest basis sets employed were 6-311G(3df, 2p), 6-311 + + G(3df, 3pd), and the Dunning “correlation consistent” polarized triple-split valence basis set (cc-pVTZ). Electron correlation was probed at the MP4 level, but the QCISD method was also used with the largest basis sets. While electron correlation favors 3 over 1 by about 2 kcal/mol, the correlated relative energies with all basis sets employed range from 0.36-1.03 kcal/mol in favor of 1. The best estimate of this difference, 0.86 kcal/mol, is essentially identical with the (scaled) zero-point energy difference, 0.84 kcal/mol, favoring 3 over 1. These results indicate that 1 and 3 have almost exactly the same energy at 0 K. Our best value for the dissociation energy of CH5+ is 42.0 kcal/mol [QCISD(T)/6-311 + + G(3df, 3pd)//MP2(fu)/6-311 + + G(2df, 2pd), corrected to 298 K], which agrees very well with the experimental value. © 1992 by John Wiley & Sons, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...