Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    Journal of Physical Organic Chemistry 8 (1995), S. 407-420 
    ISSN: 0894-3230
    Keywords: Organic Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: An ab initio molecular orbital study of the potential energy surface of the C6H5O + O reaction was performed at the (PUMP3/6-31G*//UHF/6-31G*) level of theory. Various reaction channels were considered. The most favorable mechanism, la and Ib, start from the attachment of the oxygen atom to the carbon atom of the C6 ring in the ortho- or para position with respect to CO, taking place without activation energy. Then, either hydrogen elimination by mechanism Ia or 1,2-H shift from the C(H)(O) group takes place; the latter process leads to the formation of the very stable C6H4(O)(OH) radical, which can also eliminate H by mechanism Ib. Thus, the main products of the C6H5O (2B1) + O(3P) reaction are o/p-benzoquinones and the hydrogen atom. At low temperatures, however, the system may be trapped in the potential well of the C6H4(O)(OH) intermediate. At high temperatures, the reaction may proceed by the formation and decomposition of o/p-benzoquinones. Because of their higher activation energies, the reaction mechanisms giving rise to other products-the attachment of the oxygen atom to the bridging position to form an epoxy intermediate, followed by insertion of O into the CC bond and dissociation to give C5H5 and CO2 (channel IIc), in addition to the attachment of oxygen to the terminal O atom of C6H5O followed by elimination of O2 (channel III) - cannot compete with channel Ia or Ib. RRKM calculation was carried out for the total and individual rate constants for channels Ia and Ib. The three-parameter expression for the total rate constant, fitted by the least-squares method for the temperature range of 300-3000 K, is given as ktot = 5·52×10-17 T1·38 e+148/T cm3 mol-1 s-1.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...