Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    Communications in Numerical Methods in Engineering 14 (1998), S. 103-134 
    ISSN: 1069-8299
    Keywords: computational quantifier elimination ; edge crack ; feasibility (consistency) conditions ; fracture mechanics ; numerical methods in engineering ; parametric inequality constraints ; Engineering ; Numerical Methods and Modeling
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: In this paper, an attempt is made to show the usefulness of computational quantifier elimination (CQE) techniques in computer algebra inside classical numerical methods in engineering for the derivation of feasibility (consistency) conditions in problems with weakly parametric linear inequality constraints (with the parameters appearing only in their right-hand sides). A simple, but non-trivial, straight edge-crack problem in fracture mechanics under linear inequality constraints both on the applied loading along the crack faces and on the value of the stress intensity factor at the crack tip (associated with the Green/weight function method, numerical approximations and classical numerical integration) is used for an elementary illustration of the proposed approach. In this application, the method used tries to imitate the theoretical principle of the linear programming methods. The manually obtained related result is expressed as a disjunction of conjunctions of inequalities (as is frequently the case in similar CQE problems), and concrete numerical results are also displayed. The related influence of various approximations and the application of the trapezoidal quadrature rule are also considered in some detail. Further possibilities could concern the application of the approach to other numerical methods in engineering (such as to the finite and the boundary element methods, to singular and hypersingular integral equation methods, etc.) combined with efficient algorithms for linear inequality constraints such as the old Fourier and the recent Weispfenning elimination methods. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...