Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 28 (1989), S. 181-191 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: The dynamic substructure method is extended to multilevel (recursive) substructures. The obvious distinction of the two approaches is that the stiffness and mass matrices before condensation are no longer frequency independent. The dynamic stiffness matrix at any substructure level is proved to be a function of the vibrating frequency in terms of some constant matrices which are derivable from the dynamic stiffness matrix at one lower substructure level. The method can accurately predict more modes than the number of degrees of freedom retained. The computational procedure, the generalized inverse iteration, the stationary principle of the system natural frequency and the generalized Rayleigh's quotient are derived for the frequency dependent matrices. Numerical examples are given to illustrate some engineering applications. A transcendental dynamic stiffness matrix can be transformed to a more convenient algebraic form by the present method.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...