Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 28 (1989), S. 801-815 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: In this paper we compare direct and preconditioned iterative methods for the solution of nonsymmetric, sparse systems of linear algebraic equations. These problems occur in finite difference and finite element simulations of semiconductor devices, and fluid flow problems.We consider five iterative methods that appear to be the most promising for this class of problems: the biconjugate gradient method, the conjugate gradient squared method, the generalized minimal residual method, the generalized conjugate residual method and the method of orthogonal minimization. Each of these methods was tested using similar preconditioning (incomplete LU factorization) on a set of large, sparse matrices arising from finite element simulation of semiconductor devices. Results are shown where we compare the computation time and memory requirements for each of these methods against one another, as well as against a direct method that uses LU factorization to solve these problems.The results of our numerical experiments show that preconditioned iterative methods are a practical alternative to direct methods in the solution of large, sparse systems of equations, and can offer significant savings in storage and CPU time.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...