Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 28 (1989), S. 2761-2776 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: The performance of group implicit algorithms is assessed on actual concurrent computers. We show that, as the number of subdomains is increased, performance enhancements are derived from two sources: the increased parallelism in the computations; and a reduction in equation solving effort. Moreover, we show that these two performance enhancements are synergistic, in the sense that the corresponding speed-ups are multiplied, rather than merely added. Our numerical simulations demonstrate that, if n is the number of degrees of freedom of the structure, p the number of processors used in the computations, and s ≥ p is the number of subdomains in the partition, the net speed-up is \documentclass{article}\pagestyle{empty}\begin{document}$ O\left({p\sqrt s} \right) $\end{document} in 2D and O(ps) in 3D, asymptotically as n/s → ∞. In particular, speed-ups with respect to Newmark's method of \documentclass{article}\pagestyle{empty}\begin{document}$ O\left({p\sqrt s} \right) $\end{document} in 2D and O(s) in 3D are obtained on a single-processor machine. Finally, simulations on a 32-node hypercube are presented for which the interprocessor communication efficiencies obtained are consistently in excess of 90 per cent.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...