Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 21 (1983), S. 2177-2188 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Thermal and thermo-oxidative degradation of poly(vinyl chloride)s (PVCs) containing increased concentrations of allylic chlorines, PVC(A)s, prepared by controlled chemical dehydrochlorination with potassium-t-butoxide (t-BuOK) have been studied. The introduction of small amounts of internal allylic chlorines into PVC significantly decreases the thermal and thermo-oxidative stability of the resin. A linear relationship exists between the initial rates (VHCl)0 of thermal and thermooxidative dehydrochlorination of solid PVC(A)s and the concentration S of internal allylic chlorines. Both the slope and the intercept of the thermo-oxidative (VHCl)0 vs. S plot are higher in oxygen than those obtained in nitrogen at the same temperature; this finding is attributed to fast oxidation of polyenes, and to peroxy radicals formed during polyene oxidation, which initiate subsequent HCl loss by attacking normal repeat units in PVC. The extent of HCl loss as a function of time during thermal degradation of PVC(A)s in intert solvent shows a rapid initial phase followed by a slower stationary phase. The first phase is due to dehydrochlorination involving the labile chlorines, while the stationary phase indicates random initiation of HCl loss at normal—CH2—CHCl— repeat units. Initial rates of HCl loss increase with S, while the rates of HCl loss during the stationary phase are independent of S. The rate constant of initiation of HCl loss at internal allylic chlorines is almost four orders of magnitude higher than that of random initiation; however, the former is still orders of magnitude lower than that of chain propagation. Quantitative analysis of UV-visible spectra of PVC(A)s degraded in solution suggests geometric polyene distribution. The average length of polyenes decreases as the extent of HCl loss increases and reaches a constant value of ca. 3 at ca. 1% HCl loss for all the investigated PVC(A) samples.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...