Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 10 (1966), S. 229-244 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Stress softening of carbon black-reinforced butadiene-styrene rubber was studied as a function of the rate and temperature of the original tensile deformation. To a good approximation, stress softening depends on the product of the extension rate and a temperature function which is analytically well represented by the familiar Williams-Landel-Ferry relationship. When the elongation of the original deformation is also varied, a good correlation is obtained between stress softening and the maximum stress attained in the original extension, irrespective of the particular combination of strain, strain rate and temperature used to achieve this stress. Variables which tend to increase the stiffness of the vulcanizate, such as increased degree of crosslinking or carbon black chain structure, also increase stress softening; dilution by plasticizers decreases it. Prestressing at high strain rates and low temperatures affects the stress-strain curve of the softened vulcanizates beyond the elongation of the original extension. Connections are established between stress softening and viscoelastic and failure behavior. The evidence presented favors the contribution of several mechanisms to the general phenomenon of stress softening. These are thixotropy of transient filler structures, network chain rupture, and breakage of “permanent” filler structure. The latter appears to be most important at high strain rates, low temperatures, and with highly reticulated “structure” blacks.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...