Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Compositionally and structurally varied copolymers all containing n-octadecyl acrylate were prepared and evaluated as viscosity index improvers in a common base oil under conditions of low shear. Systems evaluated over a range of copolymer and blend composition were: copolymers of n-octadecyl acrylate with, respectively, methyl methacrylate, 2-ethylhexyl acrylate, and n-dodecyl acrylate; and homopolymers of poly(n-octadecyl acrylate), prepared with a wide range of molecular weights. Properties were compared with those of blends of commercial methacrylate copolymers (acryloids) which had been freed of their entraining liquid. Mixtures of base oil with copolymers of n-octadecyl acrylate and methyl methacrylate, compared at fixed SAE viscosities, were the most efficient of all blends studied. They had the smallest rate of change of viscosity with temperature (as measured by their ASTM slopes), particularly in the composition region of incipient polymer precipitation at room temperature. Efficiency of certain of these composition was somewhat greater than that of the acryloids. A parameter that related concentration and weight-average molecular weight was used to correlate all of the data for ASTM slope and viscosity. Empirical relations developed by using this parameter enabled rheological data to be estimated that agree within 6% of experimental values for the case of thermodynamically good base oil solvents. These data demonstrated the relatively small contributions of copolymer structure to viscosity index improvement.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...